留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于支持向量机的桥式起重机金属结构非概率可靠性分析

杨正茂 孟文俊

杨正茂, 孟文俊. 基于支持向量机的桥式起重机金属结构非概率可靠性分析[J]. 机械科学与技术, 2015, 34(3): 381-385. doi: 10.13433/j.cnki.1003-8728.2015.0312
引用本文: 杨正茂, 孟文俊. 基于支持向量机的桥式起重机金属结构非概率可靠性分析[J]. 机械科学与技术, 2015, 34(3): 381-385. doi: 10.13433/j.cnki.1003-8728.2015.0312
Yang Zhengmao, Meng Wenjun. Non-probabilistic Reliability Analysis of Bridge Crane Metal Structure Based on Support Vector Machine[J]. Mechanical Science and Technology for Aerospace Engineering, 2015, 34(3): 381-385. doi: 10.13433/j.cnki.1003-8728.2015.0312
Citation: Yang Zhengmao, Meng Wenjun. Non-probabilistic Reliability Analysis of Bridge Crane Metal Structure Based on Support Vector Machine[J]. Mechanical Science and Technology for Aerospace Engineering, 2015, 34(3): 381-385. doi: 10.13433/j.cnki.1003-8728.2015.0312

基于支持向量机的桥式起重机金属结构非概率可靠性分析

doi: 10.13433/j.cnki.1003-8728.2015.0312
基金项目: 

国家自然科学基金项目(51075289,51110105011)与山西省自然科学基金项目(2012011025-5)资助

详细信息
    作者简介:

    杨正茂(1986-),硕士,研究方向为重大机械装备CAD/CAE、机电液一体化系统先进控制技术,tyustyzm@163.com;孟文俊(1963-),教授,博士生导师,tyustmwj@tyust.edu.cn

    杨正茂(1986-),硕士,研究方向为重大机械装备CAD/CAE、机电液一体化系统先进控制技术,tyustyzm@163.com;孟文俊(1963-),教授,博士生导师,tyustmwj@tyust.edu.cn

Non-probabilistic Reliability Analysis of Bridge Crane Metal Structure Based on Support Vector Machine

  • 摘要: 基于集合理论凸方法中的凸模型方法,对桥式起重机金属结构系统存在的不确定性,推导出其非概率可靠性指标。对DQ28.5m_75t_A6桥式起重机金属结构系统进行了有限元强度分析,获得了结构危险点的应力响应。通过试验设计方法获取结构危险点的应力与不确定参数的样本,并利用支持向量机技术得到了应力响应关于不确定系统参数的显式表达式,进而计算出此结构的非概率可靠度。结果表明:该方法成功的解决了金属结构的非概率可靠性分析问题。
  • [1] Ben-Haim Y. Convex models of uncertainty in pulse buckling of shells[J]. Journal of Applied Mechanics,1993,60(3):683-688
    [2] Elishakoff I, Elisseeff P G, Stewart A L. Non- probabilistic convex-theoretic modeling of scatter in material properties[J]. American Institute of Aeronautics and Astronautics Journal,1994,32(4):843-849
    [3] 郭书祥,吕震宙,冯元生.基于区间分析的结构非概率可靠性模型[J].计算力学学报,2001,18(1):56-60 Guo S X, Lu Z Z, Feng Y S. A non-probabilistic model of structural reliability based on interval analysis[J]. Chinese Journal of Computational Mechanics,2001,18(1):56-60 (in Chinese)
    [4] 郭书祥,吕震宙,冯元生.机械静强度可靠性设计的非概率方法[J].机械科学与技术,2000,224(S):106-107 Guo S X, Lu Z Z, Feng Y S. Non-probabilistie reliability method for the design of mechanieal components[J]. Mechanical Science and Technology,2000,224(suppl):106-107 (in Chinese)
    [5] 王晓军,邱志平,武哲.结构非概率集合可靠性模型[J].力学学报,2007,(5):641-646 Wang X J, Qiu Z P, Wu Z. Non-probabilistic set-based model for structural reliability[J]. Chinese Journal of Theoretical and Apllied Mechanic,2007,39(5):641-646 (in Chinese)
    [6] 邱志平.不确定性结构力学问题的集合理论凸方法[M].北京:科学出版社,2008:95-111 Qiu Z P. The convex method set theory of the uncertainties structural mechanics problems[M]. Beijing:Science Press,2008:95-111 (in Chinese)
    [7] Bucher C G, Bourgund U. A fast and efficient response surface approach for structural reliability problems[J]. Structural Safety,1990,7(1):57-56
    [8] Hurtado J E. An examination of methods for approximating implicit state functions from the viewpoint of statistical learning theory[J]. Structural Safety,2004,26(3):271-293
    [9] Deng J, Gu D S. Structural reliability analysis for implicit performance functions using artificial neural network[J]. Structural Safety,2005,27(1):25-48
    [10] Hurtado J E, Alvarez D A. Classification approach for reliability analysis with stochastic finite element modeling[J]. Journal of Structural Engineering,2003,129(8):1141-1149
    [11] Vapnik V N. The nature of statistical learning theory[M]. New York:Springer-Verlag,1995:181-195
    [12] Wang X J, Qiu Z P. Probability and convexity concepts are not antagonistic[J]. Acta Mechanica,2011,219(1/2):45-64
    [13] Wang X J, Qiu Z P. Non-probabilistic set-model for structure safety measure and convexity concepts are not antagonistic[J]. Acta Mechanica,2008,198: 51-64
    [14] Meng W J, Yang Z M, Qi X L. Reliability analysis-based numerical calculation of metal structure of bridge crane[J]. Mathematical Problems in Engineering,2013,12(1):11-15
    [15] 孙文彩,杨自春,李昆锋.基于支持向量回归机的结构非概率可靠性分析[J].华中科技大学学报,2012,40(4):29-32 Sun W C, Yang Z C, Li K F. Structural non-probabilistic reliability analysis using support vector regression[J]. Journal of Hua zhong University of Science and Technology University,2012,40(4):29-32 (in Chinese)
    [16] 邱志平.非概率集合理论凸方法及其应用[M].北京:国防工业出版社,2005:46-58 Qiu Z P. Convex method based on non-probabilistic set-theory and its application[M]. Beijing:National Defence Industry Press,2005:46-58 (in Chinese)
    [17] Ben-Haim Y. A non-probabilistic measure of reliability of linear systems based on expansion of convex models[J]. Structural Safety,1995,17(2):91-109
    [18] 杨志民,刘广利.不确定性支持向量机-算法及应用[M].北京:科学出版社,2012: 56-70 Yang Z M, Liu G L. Survey on uncertainty support vector machine and its algorithm and application[M]. Beijing:Science Press,2012:56-70 (in Chinese)
    [19] 马超,吕震宙.隐式极限状态方程的非概率可靠性分析[J].机械强度,2009,31(1):45-50 Ma C, Lv Z Z. Non-probabilistic reliability analysis method for implicit limit state function[J]. Journal Mechanical Strength,2009,31(1):45-50 (in Chinese)
  • 加载中
计量
  • 文章访问数:  149
  • HTML全文浏览量:  12
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-08
  • 刊出日期:  2015-03-05

目录

    /

    返回文章
    返回