留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于序列二次规划算法的圆柱度误差评定方法

何改云 刘佩佩 王凯

何改云, 刘佩佩, 王凯. 基于序列二次规划算法的圆柱度误差评定方法[J]. 机械科学与技术, 2014, 33(12): 1845-1849. doi: 10.13433/j.cnki.1003-8728.2014.1217
引用本文: 何改云, 刘佩佩, 王凯. 基于序列二次规划算法的圆柱度误差评定方法[J]. 机械科学与技术, 2014, 33(12): 1845-1849. doi: 10.13433/j.cnki.1003-8728.2014.1217
He Gaiyun, Liu Peipei, Wang Kai. Evaluation of the Cylindricity Error Based on the Sequential Quadratic Programming Algorithm[J]. Mechanical Science and Technology for Aerospace Engineering, 2014, 33(12): 1845-1849. doi: 10.13433/j.cnki.1003-8728.2014.1217
Citation: He Gaiyun, Liu Peipei, Wang Kai. Evaluation of the Cylindricity Error Based on the Sequential Quadratic Programming Algorithm[J]. Mechanical Science and Technology for Aerospace Engineering, 2014, 33(12): 1845-1849. doi: 10.13433/j.cnki.1003-8728.2014.1217

基于序列二次规划算法的圆柱度误差评定方法

doi: 10.13433/j.cnki.1003-8728.2014.1217
基金项目: 

国家高技术研究发展计划项目(863计划)(2012AA040701)

国家自然科学基金青年科学基金项目(51205286)资助

详细信息
    作者简介:

    何改云(1965- ),教授,博士,博士生导师,研究方向为加工质量在机监测与控制和CAD/CAM/@A1集成技术,hegaiyun@tju.edu.cu。

Evaluation of the Cylindricity Error Based on the Sequential Quadratic Programming Algorithm

  • 摘要: 圆柱的形状误差为研究对象,为提高圆柱体形状误差评定精度,增强其理论和工程应用价值,提出一种基于序列二次规划算法的圆柱度误差评定方法.定义了测量点到圆柱面的符号距离函数,建立了圆柱度误差评定的数学模型,应用最小二乘方法将圆柱进行粗定位,将拟合圆柱和测量点进行坐标变换简化了误差评定数学模型,运用运动几何学的知识和序列二次规划(SQP)算法解决了满足最小区域原则的圆柱度评定的优化问题.实验结果表明:提出的圆柱度的评定算法稳定性较好,效率和精度较高,所得到的误差值是有效的.
  • [1] 崔长彩,黄富贵,范伟,等自适应迭代区域搜索法用 于直线度的精密评定[J]机械科学与技术,2010,29 (12):1525-1529 Cui C X,Huang F G,FanW,et al.An adaptive area search method for straightness precision evaluation[J] Mechanical Science and Technology for Aerospace Engineening,2010,29 (12):1525-1529(in Chinese)
    [2] ISO 1101-2004.Geometrical producta specifications-geometrical tolerancing-tolerances of form,orientation, location and run-out [S].2004
    [3] Venkaiah N,Shunmugam M S.Evaluation of form data using computational geometric: techniques-Part II: Cylindricity error[J]International Journal of Machine Tools&Manufactaure,2007,47:1237-1245
    [4] 赵茜,王东霞,刘兰英圆柱度误差及其评定方法综 述[J]计量与测试技术,2006,33(12)Zhao Q,Wang D X,Liu L Y.Cylindricity error and its evaluation methods review[J]Metrology and Measurement Tec:hnology,2006,33(12)(in Chinese)
    [5] Chou S Y,Sun C WAssessing cylindricity for oblique cylindrical features [J].International Journal of Machine Tools and Manufactaure,2000,20; 327-341
    [6] 罗钧,卢嘉江,陈伟民,等具有禁忌策略的蜂群算法 评定圆柱度误差[J]重庆大学学报,2009,32(12); 1482-1485 Luo J,LU J J,Chen WM,et al.Cylindricity error evaluation using artificial bee colony algorithm with tabu strategy [J]Journal of Chongqing University,2009,32 (12):1482-1485(in Chinese)
    [7] 李济顺,雷贤卿,薛玉君,等基于坐标变换的圆柱度 误差评定算法[J]中国机械工程,2009,20 (16); 1983-1986 LiJS,LeiXQ, Xue Y J,et al.Evaluation algorithm of cylindricity error based on coordinate transformation[J China Mec:hanic:al Engineering,2009,20(16):1983-1986(in Chinese)
    [8] 王全为,李栋,李学艺基于最优控制的圆度圆柱度误 差精确评定[J]太原理工大学学报,2007,38(1):12-14 Wang QW,Li D,Li X Y.Accurate assessment of departure from roundness and cylindricity based on the optimal control[J]Journal of Taiyuan University of Technology,2007,38 (1):12-14(in Chinese)
    [9] Lai J,Chen I.Minimum zone evaluation of circtaes and cylinders[J].International Journal of Machine Tools and Manufactaure,1996,36;435-451
    [10] Zhu L M,Ding H.Application of kinematic geometry to computational metrology:distance funcaion based hierarchical algorithms for cylindricity evaluation[J] International Journal of Machine Tools and Manufactaure, 2003,43;203-215
    [11] Sun Y,Wang X,Guo D,et al.Machining localization and quality evaluation of parts with sculptured surfaces using SQP method [J].International Journal of Machine Tools and Manufactaure,2009,42:1131-1139
    [12] 丁汉,朱利民,熊振华复杂曲面快速测量、建模及基 于测量点云的RP和NC加工[J]机械工程学报, 2003,39(11);28-37 Ding H,Zhu L M,Xiong Z H.Survey on coordinate measurement,geometric: modeling and RP or NC code generation from measured data points[J]Chinese Journal of Mechanical Engineering,2003,39 (11);28-31 (in Chinese)
    [13] Wen X L,Huang J C,Sheng D H,et al.Conicity and cylindricity error evaluation using partictae swarm optimization[J]Precision Engineering,2010,34:338-344
    [14] 何改云形位误差的逼近原理及算法研究[D]天津: 天津大学,2006 He G Y.Research on the approach theory and algorithm for evaluating geometrical errors[D]Tianjin:Tianjin University,2006(in Chinese)
  • 加载中
计量
  • 文章访问数:  195
  • HTML全文浏览量:  29
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-07
  • 刊出日期:  2014-12-05

目录

    /

    返回文章
    返回