留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

伺服约束控制中基于广义虚位移分解的约束违约抑制

张新荣 孟为来 崔腾 Yehwa Chen

张新荣, 孟为来, 崔腾, Yehwa Chen. 伺服约束控制中基于广义虚位移分解的约束违约抑制[J]. 机械科学与技术, 2014, 33(12): 1811-1814. doi: 10.13433/j.cnki.1003-8728.2014.1210
引用本文: 张新荣, 孟为来, 崔腾, Yehwa Chen. 伺服约束控制中基于广义虚位移分解的约束违约抑制[J]. 机械科学与技术, 2014, 33(12): 1811-1814. doi: 10.13433/j.cnki.1003-8728.2014.1210
Zhang Xinrong, Meng Weilai, Cui Teng, Yehwa Chen. Elimination of Constraint Violation Based on Decomposition of Generalized Virtual Displacements under Servo Constraint Control[J]. Mechanical Science and Technology for Aerospace Engineering, 2014, 33(12): 1811-1814. doi: 10.13433/j.cnki.1003-8728.2014.1210
Citation: Zhang Xinrong, Meng Weilai, Cui Teng, Yehwa Chen. Elimination of Constraint Violation Based on Decomposition of Generalized Virtual Displacements under Servo Constraint Control[J]. Mechanical Science and Technology for Aerospace Engineering, 2014, 33(12): 1811-1814. doi: 10.13433/j.cnki.1003-8728.2014.1210

伺服约束控制中基于广义虚位移分解的约束违约抑制

doi: 10.13433/j.cnki.1003-8728.2014.1210
基金项目: 

国家自然科学基金项目(51205029)

中央高校基本科研业务费专项基金项目(CHD2011TD016)

教育部留学回国人员科研启动基金项目(20101174)资助

详细信息
    作者简介:

    张新荣(1968- ),教授,博士,研究方向为机械系统动力学与控制和工程车辆电液控制,zxr-68@126.com。

Elimination of Constraint Violation Based on Decomposition of Generalized Virtual Displacements under Servo Constraint Control

  • 摘要: 基于Udwadia和Kalaba方程的伺服约束控制理论可以较好地应用在机械系统的轨迹跟踪控制中.在伺服约束控制中,对约束系统动力学模型的数值积分过程会产生对低阶约束的违约,同时还存在初始值不相容引起的控制偏差甚至系统不稳定问题.利用系统广义质量矩阵的乔利斯基分解,将描述系统的广义虚位移向量经过变换,在约束流形上分解为约束方向与约束允许方向,从而分离出速率约束及坐标约束违约部分,在此基础上推导出修正公式.以二自由度机械臂为仿真对象,在伺服约束轨迹控制中的应用进行了仿真研究.结果表明,基于虚位移分解的方法可以对伺服控制中的约束违约进行抑制,同时也可以解决系统初始条件不相容引起的问题.
  • [1] Udwadia F E.A new perspectaive on the tracking control of nonlinear structaural and mechanical systems[J] Proceedings of the Royal Society,Series A: Mathematical,Physical and Engineering Sciences, 2003,459(2035):1783-1800
    [2] Braun D J,Goldfarb M.Eliminating constraint drift in the numerical simulation of constrained dynamical systems [J]Computer Methods in Applied Mechanict、 and Engineering,2009,198:3151-3160
    [3] Baumgarte J.Stabilization of constraints and integrals of motion in dynamical systems[J]Computer Methods in Applied Mechanic、and Engineering,1972,1(1):1-16
    [4] 孔向东,钟万础非线性系统动力学微分代数方程约 束违约的自动修正[J]大连理工大学学报,1999,39 (1);22-25 Kong X D,Zhong W X.Self-correctaion algorithm of constraint errors of differential algebraic: equations for nonlinear system dynamic、[J]Journal of Dalian University of Technology,1999,39(1):22-25(in Chinese)
    [5] 刘颖,马建敏,苏芳,等多体系统动力学方程的无违 约数值计算方法[J]计算力学学报,2010,27(5); 942-947 LiuY,MaJM,Su F,et al.Precise numerical solution for multibody system'、equations of motion based on algorithm without constraint violation[J]Chinese Journal of Computational Mechanict、,2010,27(5):942-947(in Chinese)
    [6] 刘颖,马建敏多体系统动力学方程的反馈参数自适 应约束违约稳定法[J]复旦学报,2012,51(4);432-437 Liu Y,Mang J M.Adaptive feedback parameters for Baumgarte's constraint violation stabilization methods of multibody system'、equations of motion[J]Journal of Fudan University,2012,51(4);432-437(in Chinese)
    [7] Lin S T,Chen M W A PID type constraint stabilization method for numerical inteb anon of multibody systenLs[J] Journal of Computational and Nonlinear Dynamic、, 2011,6(10);44501-44506
    [8] Braun D J,Goldfarb M.Simulation of constrained mechanical systems-part I; an equation of motion[J] Journal of Applied Mechanict、,2012,79(4):410171-410178
    [9] 丁玉洁,潘振宽多体系统动力学微分-代数方程广 义-。投影法[J]工程力学,2013,30(4);380-184 Ding Y J,Pan Z K.Generalized-a projectaion method for diHerentialalgebraic equations of multibody dynanucta[J] Engineering Mechanict、,2013,30(4):380-184(in Chinese)
    [10] Blajer W An orthonormal tangent space method for constrained multibody systems[J].Computer Methods in Applied Mechanic、and Engineering,1995,121(1);45-57
    [11] BlajerW,SchiehlenW,Schirm W A projectaive criterion to the coordinate partitioning method for multihody dynamic、[J].Archive of Applied Mechanict、,1994,64 (2):86-98
    [12] Blajer W Elimination of constraint violation and actx:uracy aspectas in numerical simulation of multihody systems [J Multihody System Dynamicta,2002,7(3);265-284
    [13] Blajer W Methods for constraint violation suppression in the numerical simulation of constrained multihody systems-A comparative study[J]Computer Methods in Applied Mechanic、and Engineering,2011,200(13): 1568-1576
    [14] Kovectaes J,Piedhoeuf Jean-Claude.A novel approach for the dyamic analysis and simulation of constrained mechanical systems[C]//Proceedings of ASME 2003, Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Chicago Illinois USA.New York:ASME,2003:1-10
  • 加载中
计量
  • 文章访问数:  140
  • HTML全文浏览量:  29
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-14
  • 刊出日期:  2014-12-05

目录

    /

    返回文章
    返回