留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于遗传算法的行星轮系混合离散变量优化

王盛 龚宪生

王盛, 龚宪生. 基于遗传算法的行星轮系混合离散变量优化[J]. 机械科学与技术, 2014, 33(8): 1150-1154. doi: 10.13433/j.cnki.1003-8728.2014.0808
引用本文: 王盛, 龚宪生. 基于遗传算法的行星轮系混合离散变量优化[J]. 机械科学与技术, 2014, 33(8): 1150-1154. doi: 10.13433/j.cnki.1003-8728.2014.0808
Wang Sheng, Gong Xiansheng. Hybrid Discrete Variable Optimization Design of Planetary Gear Train Based on Genetic Algorithm[J]. Mechanical Science and Technology for Aerospace Engineering, 2014, 33(8): 1150-1154. doi: 10.13433/j.cnki.1003-8728.2014.0808
Citation: Wang Sheng, Gong Xiansheng. Hybrid Discrete Variable Optimization Design of Planetary Gear Train Based on Genetic Algorithm[J]. Mechanical Science and Technology for Aerospace Engineering, 2014, 33(8): 1150-1154. doi: 10.13433/j.cnki.1003-8728.2014.0808

基于遗传算法的行星轮系混合离散变量优化

doi: 10.13433/j.cnki.1003-8728.2014.0808
基金项目: 

国家自然科学基金项目(51175525)

重庆大学机械传动国家重点实验室自主研究基金项目(0301002109137)

国家高技术研究发展计划(863计划)项目(2007AA041802)资助

详细信息
    作者简介:

    王盛(1988-),硕士研究生,研究方向为机械传动智能化设计及应用,wangsheng360429@163.com;龚宪生(联系人),教授,博士,博士生导师,cqxsgong@cqu.edu.cn

    王盛(1988-),硕士研究生,研究方向为机械传动智能化设计及应用,wangsheng360429@163.com;龚宪生(联系人),教授,博士,博士生导师,cqxsgong@cqu.edu.cn

Hybrid Discrete Variable Optimization Design of Planetary Gear Train Based on Genetic Algorithm

  • 摘要: 行星轮系设计复杂,各参数受到配齿、可靠性和干涉等条件的限制。模数还受到国家标准的制约,只能选取一些离散值,用经典优化算法求解效果很差。遗传算法处理对象不是变量本身,而是经过编码后的基因,这种先天的优势能较好的处理这类变量类型多样的优化问题。通过对齿数和模数的处理,将无序的离散值转变为连续的整型数。提出了一种改进的实值编码方式,建立满足配齿、变位系数、干涉和强度等约束条件,以体积最小为目标函数的优化模型。合理选择遗传算法控制参数,编写了Matlab程序对所建的模型进行求解。研究结果表明:该改进算法全局寻优能力强,多次启动均能收敛于统一最优解。在满足各约束条件的情况下,优化后体积减小了21.056%。
  • [1] 叶秉良,赵匀. 拖拉机 NGW 型行星式最终传动多目标可靠性优化[J]. 农业工程学报,2008,24(11):89-94Ye B L,Zhao J. Multi-objective reliability optimizationdesign of tractor' s NGW type planetary gear finaltransmission[J]. Transactions of the CSAE,2008,24(11):89-94 (in Chinese)
    [2] 李哲,杨道龙,郭会珍. 基于遗传算法行星齿轮减速机构优化设计[J]. 煤矿机械,2012,33(9):36-38Li Z,Yang D L,Guo H Z. Optimal design to planet geardeceleration institution based on genetic algorithm[J].Coal Mine Machinery,2012,33(9):36-38 (in Chinese)
    [3] 毕春长,丁予展. 实数编码的遗传算法在斜齿圆柱齿轮传动优化中的应用[J]. 机械科学与技术,2000,19 (6):882-884Bi C C,Ding Y Z. Genetic algorithm with real numbercode and application to helicalgear optimal design[J].Mechanical Science and Technology,2000,19(6):882-884 (in Chinese)
    [4] 贾毅朝,曲尔光,张慧鹏. 基于 MATLAB 的行星齿轮减速器优化设计[J]. 组合机床与自动化加工技术,2010,(4):23-25Jia Y C,Qu E G,Zhang P H. Optimization design ofthe planetary gear reducer based on MATLAB[J].Modular Machine Tool & Automatic ManufacturingTechnique,2010,(4):23-25 (in Chinese)
    [5] Mitchell M. An Introduction to genetic algorihms[M].The MIT Press,1996
    [6] 陈刚,尹健,田睿. 基于遗传算法的齿轮传动混合离散变量优化设计[J]. 现代机械,2004,(6):25-37Chen G,Yin J,Tian R. Mixed discrete optimal designof gear transmission based on genetic algorithm[J].Modern Machinery,2004,(6):25-37 (in Chinese)
    [7] 袁晓辉,袁艳斌,王乘,等. 一种新型的自适应混沌遗传算法[J]. 电子学报,2006,34(4):708-712Yuan X H,Yuan Y B,Wang C,et al. A novel self-adaptive chaotic genetic algorithm[J]. Acta ElectronicaSinica,2006,34(4):708-712 (in Chinese)
    [8] Huang M,Liang X,et al. An inproved bee evolution-ary genetic algorithm[J]. International Conference onIntelligent Computing and Intelligent Systems,2010,(1):372-374
    [9] Zhang L Y,Wang A M. Analysis of the diversity ofpopulation and convergenece of genetic algorithms basedon negentropy[J]. Journal of Systems Engineering andElectronics,2005,16(1):215-219
    [10] 姚振刚. 行星齿轮传动设计[M]. 北京:化学工业出版社,2003Yao Z G. Planetary gear transmission design[M].Beijing:Chemical Industry Press,2003 (in Chinese)
    [11] 张干清,龚宪生. 基于可靠灰色粒子群算法的盾构机行星减速器轮系的多目标优化设计[J]. 机械工程学报,2010,46(23):135-145Zhang G Q,Gong X S. Multi-objective optimizationdesign on gear train of planetary reducer in shieldtunneling machine based on reliably grey particle swarmoptimization[J]. Journal of Mechanical Engineering,2010,46(23):135-145 (in Chinese)
    [12] 成大先. 机械设计手册:第 3 卷[M]. 北京:化学工业出版社,2008Cheng D X. Mechanical design manual:Volume Ⅲ[M].Beijing:Chemical Industry Press,2008 (in Chinese)
    [13] Quagliarella D,Vicini A. Sub-population policies for aparallel multiobjective genetic algorithm with applicationsto wing design[J]. International Con-ference on Systems,Man and Cybernetics,1998,4:3142-3147
    [14] Chang P C,Chen S H. The development of a sub-popula-tion genetic algorithm II (SPGA II) for multi-objectvecombinatorial problems[J]. Applied Soft Computing,2009,9(1):173-181
    [15] Kwak N S,Lee J S. An implementation of new selectionstrategies in a genetic algorithm-population recombinationand elitist refinement[J].
  • 加载中
计量
  • 文章访问数:  168
  • HTML全文浏览量:  41
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-01-31

目录

    /

    返回文章
    返回