留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于J-EEMD的刀具磨损状态特征提取技术

陈洪涛 傅攀 李晓辉 钟成明

陈洪涛, 傅攀, 李晓辉, 钟成明. 基于J-EEMD的刀具磨损状态特征提取技术[J]. 机械科学与技术, 2014, 33(6): 849-853. doi: 10.13433/j.cnki.1003-8728.2014.0614
引用本文: 陈洪涛, 傅攀, 李晓辉, 钟成明. 基于J-EEMD的刀具磨损状态特征提取技术[J]. 机械科学与技术, 2014, 33(6): 849-853. doi: 10.13433/j.cnki.1003-8728.2014.0614
Chen Hongtao, Fu Pan, Li Xiaohui, Zhong Chengming. Feature Extraction Techniques of Tool Wear States Based on J-EEMD[J]. Mechanical Science and Technology for Aerospace Engineering, 2014, 33(6): 849-853. doi: 10.13433/j.cnki.1003-8728.2014.0614
Citation: Chen Hongtao, Fu Pan, Li Xiaohui, Zhong Chengming. Feature Extraction Techniques of Tool Wear States Based on J-EEMD[J]. Mechanical Science and Technology for Aerospace Engineering, 2014, 33(6): 849-853. doi: 10.13433/j.cnki.1003-8728.2014.0614

基于J-EEMD的刀具磨损状态特征提取技术

doi: 10.13433/j.cnki.1003-8728.2014.0614
基金项目: 

中央高校基本科研业务费专项资金项目(SWJTU12CX039)资助

详细信息
    作者简介:

    陈洪涛(1967-),教授,博士研究生,研究方向为切削过程状态监测,scdycht@163.com

Feature Extraction Techniques of Tool Wear States Based on J-EEMD

  • 摘要: 在实际刀具状态监测的过程中,通过传感器所直接测得的数据都包含了大量的噪声信号,因此难以从中获取刀具磨损状态的变化规律,这样显然不利于进行模式识别。应用近似联合对角化下的集合经验模态分解(J-EEMD)对观测信号进行处理,基于信号本身特征,自适应地将切削加工中检测得到的振动和声发射信号分解为多个内蕴模式函数(IMF),然后根据各个IMF之间的能量比对变换,提取出了不同磨损状态下的刀具状态特征。实验证明:在该方法对测得数据进行处理的基础上,能够很好地识别出刀具磨损程度的不同状态。
  • [1] Huang N E,Shen Z,Long S r.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proc.roy.Soc.London 454A,1998:903-995
    [2] Peng Z K,Tse P W,Chu E L.An improved HilbertHuang transform and its application in vibtation signal analysis[J]. Jounal of Sound and Vibration,2005,286(9):187-205
    [3] Wu Z H,Huang N E.Ensemble empirical mode decomposition: a noise-assisted data analysis method [J]. Advances in Adaptive Data Analysis,2009,1(1):1-41
    [4] 董文智,张超.基于小波变换和 EEMD 分解的转子系统故 障 诊 断[J]. 机 械 科 学 与 技 术,2012,31 (6):972-976Dong W Z,Zhang C.Fault diagnosis for rotor systems based on wavelet transform and EEMD[J]. Mechanical Science and Technology for Aerospace Engineering,2012,31 (6):972-976 (in Chinese)
    [5] 聂鹏,徐洪垚,刘新宇,等.EEMD 方法在刀具磨损状态识别的应用[J]. 传感器与微系统,2012,31 (5):147-149Nie P,Xu H Y,Liu X Y,et al.Application of EEMD method in state recognition of tool wear[J]. Transducer and Microsystem Technologies,2012,31 (5): 147-149(in Chinese)
    [6] Zhang J,Yan r Q,Gao r X,et al.Performance enhancement of ensemble empirical mode decomposition[J]. Mechanical Systems and Signal Processing,2010,24(7):2104-2123
    [7] Cardoso J.Blind beamforming for non-gaussian signals[C]//IEEE-Proceedings-F,1993,140(6):362-370
    [8] 杨福生,洪波.独立分量分析的原理与应用[M].北京: 清华大学出版社,2006Yang F S,Hong B.The theory and application of the independent component analysis[M]. Beijing: Tsinghua University Press,2006 (in Chinese)
    [9] 张贤达.矩阵分析与应用[M]. 北京: 清华大学出版社,2004Zhang X D.Matrix analysis and its application[M].Beijing: Tsinghua University Press,2004 (in Chinese)
    [10] 方开泰,马长兴.正交与均匀试验设计[M]. 北京: 科学出版社,2001Fang K T,Ma C X.Orthogonal and uniform design [M]. Beijing: Science and Technology Press,2001 (in Chinese)
    [11] 陈日曜.金属切削原理[M]. 2 版.北京: 机械工业出版社,2012Chen r Y.Metal cutting principles[M]. and Edition.Beijing: China Machine Press,2012 (in Chinese)
    [12] Hyvarinen A,Karhunen J,Oja E.Independent component analysis[M]. John Wiley & Sons,2001
  • 加载中
计量
  • 文章访问数:  115
  • HTML全文浏览量:  18
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-14
  • 刊出日期:  2015-06-10

目录

    /

    返回文章
    返回