Research on the Grinder Intelligent Monitoring with Acoustic Emission Based on Bayesian Networks
-
摘要: 磨削过程中的声发射信号和砂轮状态及磨削状态有着很强的关联性,为了更好的实现磨削过程的智能监控,通过构建贝叶斯网络来分离及辨识声发射信号,搭建了贝叶斯网络的声发射磨削智能监控系统,并进行了磨削实验。结果表明:构建的贝叶斯网络可以有效的实现磨削过程中工件粗糙度预测、砂轮钝化和接触识别。Abstract: There is strong relationship between the acoustic emission and the states of the wheel and grinding. The Bayesian networks were used to separate and identify the acoustic emission signal for the better intelligent monito-ring of grinding. The grinder intelligent monitoring system based on Bayesian networks was established and grinding experiments were performed. The results show that thesyatem can predict the surface roughness of grinding work-pieces, blunt level and the contact states of grinding wheel.
-
Key words:
- acoustic emission /
- grinder intelligent monitoring /
- bayesian networks
-
[1] 巩亚东,吕洋,王宛山等.基于多传感器融合的磨削砂轮钝化的智能监测[J].东北大学学报(自然科学版),2003,24(3) [2] 史金飞,钟秉林.基于粗糙集理论的磨削烧伤与砂轮磨钝在线监测[J].中国机械工程,2001,12(10):1151~1154 [3] 曹德芳,邓朝晖.专家系统在磨削工艺过程仿真预报中的应用[J].金刚石与磨料磨具工程,2007,157(1):64~66 [4] 李海军等.贝叶斯网络理论在装备故障诊断中的应用[M].北京:国防工业出版社,2009 [5] 张连文,郭海鹏.贝叶斯网引论[M].北京:科学出版社,2006 [6] Karpuschewski B,Wehmeier M,Inasaki I.Grinding monitoringsystem based on power and acoustic emission sensors[J].Annalsof the CIRP,2000,49(1):235~240 [7] 焦慧峰.基于贝叶斯网络的数控平面磨床智能监测研究[D].浙江大学,2011 -

计量
- 文章访问数: 183
- HTML全文浏览量: 17
- PDF下载量: 2
- 被引次数: 0