Aeroengine Vibration Signal Analysis Based on Intrinsic Mode Function and Generalized Roughness Feature
-
摘要: 航空发动机振动信号为典型的非平稳信号,包含了多种振源振动信息和大量的噪声分量。通过对航空发动机振动信号进行Hilbert-Huang变换,将复杂信号分解为代表不同物理意义的单分量固有模态函数(intrinsic mode functions,IMF),然后对每一个IMF信号提取广义粗糙度特征实现对振动信号的描述。由于各IMF分量的能量百分比大小表征了该分量信号的有效性,使用提取的能量百分比对各分量下的广义粗糙度特征进行加权,最后得到了对发动机振动信号进行描述的能量加权广义粗糙度特征。通过对航空发动机实际试车采集的碰摩振动信号和正常工况下信号的实验分析可以看出,两种情况下信号特征具有明显不同,说明该特征可以有效地对振动信号进行描述。Abstract: The vibration signal of the aeroengine is non-stationary and involves multi-frequency components as well as an abundant of noise. The Hilbert-Huang transform was used to decompose the vibration signal into a number of intrinsic mode functions (IMF) which represented the physically meaning of the data. Then, the generalized roughness vectors of the IMF were obtained. Because the energy of the IMF represents the validity of this component in the whole signal, the percentage of energy is used as the weight of the generalized roughness feature. Finally, the energy weighted generalized roughness feature was obtained. The experiments on the aeroengine test data of the rubimpact and the normal conditions demonstrated that these statistic characteristics were distinguished for different conditions.
-
[1] 高斌.基于希尔伯特-黄变换的航空发动机整机振动故障诊断[D].南京航空航天大学,2009 [2] 龚海鹏.小波变换在转子故障诊断中若干问题的研究[D].上海交通大学,2008 [3] Huang N E,Shen Z,Long S R.The empirical mode decomposi-tion and the Hilbert spectrum for nonlinear and non-stationary timeseries analysis[A].Proceedings of the Royal Society[C],Lon-don:The Royal Society,1998,454:903~995 [4] Huang N E,Shen Z,Long S R.A new view of nonlinear waterwaves:the hilbert spectrum[J].Annual Review of Fluid Me-chanics,1999,31:417~457 [5] 于德介,程军圣,杨宇.机械故障诊断的Hilbert-Huang变换方法[M].北京:科学出版社,2006 [6] 程军圣,于德介,杨宇.基于内禀模态奇异值分解和支持向量机的故障诊断方法[J].自动化学报,2006,32(3):476~480 [7] 于德介,陈淼峰,程军圣等.基于EMD的奇异值熵在转子系统故障诊断中的应用[J].振动与冲击,2006,25(2):24~26 [8] 汤宝平,钟佑明,程发斌.基于HHT的非平稳信号分析仪的研究[J].仪器仪表学报,2007,28(1):29~33 [9] Charalampidis D,Kasparis T.Wavelet-based rotational invariantroughness features for texture classification and segmentation[J].IEEE Transactions on Image Processing,2002,11(8):825~837 -

计量
- 文章访问数: 143
- HTML全文浏览量: 16
- PDF下载量: 4
- 被引次数: 0