Application of an Effective Singular Method in Faint Signal Feature Value Selection Extraction
-
摘要: 在基于奇异值分解技术的信号处理中,针对齿轮振动信号中微弱故障特征难以提取的问题,提出了一种选择有效奇异值的方法。该方法对全部的奇异值单独重构,得到对应的一维信号并对其进行频谱分析,结合齿轮箱振动信号的特征频率成分,找出对应齿轮频谱特征的奇异值,将其进行重构得到最终经SVD处理的信号。试验处理结果表明,此法可有效提取出齿轮裂纹信号中的微弱特征,同时该方法可广泛应用于旋转机械信号中微弱特征成分的提取。Abstract: For the signal processing based on singular value decomposition, the faint fault feature is hard to be ex-tracted from the gear vibration signals. A selection method of effective singular values is proposed here to solve problem. By using every separate singular value, the one-dimensional signals are reconstructed. The frequency spectrums of the reconstructed signals are gained through Fast Fourier Transformation (FFT). Chose the singular values which correspond with the feature frequency in the gear signal; and use them to reconstruct the signal as the ultimately result. The procession results show that this method can extract the faint fault feature from the gear crack fault signal and it can be widely used in the fault feature extraction of the rotating machinery.
-
[1] 段向阳,王永生,苏永生.基于奇异值分解的信号特征提取方法研究[J].振动与冲击,2009,28(11):30~33 [2] 陈恩利,吴勇军,申永军等.基于改进奇异值分解技术的齿轮调制故障特征提取[J].振动工程学报,2008,21(5):530~534 [3] 何田,刘献栋,李其汉.噪声背景下检测突变信息的奇异值分解技术[J].振动工程学报,2006,19(3):399~403 [4] 王太勇,王正英,青永刚等.基于SVD降噪的经验模式分解及其工程应用[J].振动与冲击,2005,24(4):96~98 [5] Cempel C.Generalized singular value decomposition in multidi-mensional condition monitoring of machines-a proposal of compara-tive diagnostics[J].Mechanical Systems and Signal Process-ing,2009,23(3):701~711 [6] 刘元峰,赵玫.混沌时间序列的一种降噪算法[J].机械科学与技术,2003,22(4):538~539 [7] 齐子元,米东,徐章隧等.奇异谱分析在机械设备故障诊断中的应用[J].噪声与振动控制,2008,(1):82~84 [8] 吕志民,张武军,徐金梧.基于奇异谱的降噪方法及其在故障诊断技术中的应用[J].机械工程学报,1999,35(3):85~89 [9] 樊永生.机械设备诊断的现代信号处理方法[M].北京:国防工业出版社,2009:14~15 -

计量
- 文章访问数: 108
- HTML全文浏览量: 12
- PDF下载量: 3
- 被引次数: 0