论文:2019,Vol:37,Issue(2):218-224
引用本文:
薛小锋, 王远卓, 路成. 基于改进Kriging模型的舰载机着舰下沉速度影响性分析研究[J]. 西北工业大学学报
XUE Xiaofeng, WANG Yuanzhuo, LU Cheng. Sinking Velocity Compact-Analysis of Carrier-Based Aircraft Based on Improved Kriging Model[J]. Northwestern polytechnical university

基于改进Kriging模型的舰载机着舰下沉速度影响性分析研究
薛小锋1, 王远卓2, 路成1
1. 西北工业大学 航空学院, 陕西 西安 710072;
2. 西北工业大学 航天学院, 陕西 西安 710072
摘要:
着舰下沉速度是舰载机起落架及其连接结构载荷设计的重要输入,直接影响到起落架和机体结构重量。为了探索舰载机使用环境下各参数对下沉速度的影响,基于F/A-18A飞机的实测着舰数据,采用多元统计学中偏相关分析方法分析了15个着舰参数与下沉速度的相关程度,结果表明飞机瞬时下滑角、甲板俯仰角与下沉速度呈高度相关,进场速度、舰上接合速度与下沉速度呈中度相关。以上述4个着舰参数作为自变量,将遗传算法用于相关函数待定系数的优化求解,并建立了F/A-18A飞机下沉速度改进的Kriging插值代理模型。所建模型给出的下沉速度预测结果的复相关系数为0.981、平均相对误差为1.813%及最大相对误差为6.771%,与经验公式及普通Kriging模型对比,精度指标均为最好。所提改进Kriging模型及得到的分析结果可为类似型号舰载机下沉速度研究及着舰姿态控制提供依据。
关键词:    舰载机    下沉速度    相关分析    遗传算法    Kriging模型    影响性分析    多元统计   
Sinking Velocity Compact-Analysis of Carrier-Based Aircraft Based on Improved Kriging Model
XUE Xiaofeng1, WANG Yuanzhuo2, LU Cheng1
1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
2. School of Astronautics, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
The sinking velocity of carrier-based aircraft is an important input for landing gear design, and has a great influence on the weight of the landing gear and airframe structure. Aiming at exploring the effect of the various related landing parameters on the sinking velocity for carrier-based aircraft at the actual service environment, and based on F/A-18A measured landing data, the correlation degree between 15 landing parameters and sinking velocity is analyzed by partial correlation analysis method in multivariate statistics. The results show that the aircraft instantaneous gliding angle and deck pitch angle are highly correlated with the sinking velocity, the approach velocity and the engaging velocity are moderately correlated with the sinking velocity. The above four parameters are used as the independent variables, an improved Kriging surrogate model for the sinking velocity of F/A-18A aircraft is established, and Genetic algorithm is used to optimize the undetermined coefficients of correlation functions. The complex correlation coefficient of the sinking velocity predicted by the proposed model is 0.981, the average relative error is 1.813% and the maximum relative error is 6.771%. And comparing the empirical formula with the ordinary Kriging model, the precision index is the best. The proposed model provides the best prediction results. The improved Kriging surrogate model and the results obtained in this paper can provide a basis for studying the sinking velocity and controlling landing attitude for similar models carrier-based aircraft.
Key words:    carrier-based aircraft    sinking velocity    correlation analysis    genetic algorithm    Kriging model    compaction-analysis    multivariate statistics   
收稿日期: 2018-05-02     修回日期:
DOI: 10.1051/jnwpu/20193720218
基金项目: 国家自然科学基金(51875465)资助
通讯作者:     Email:
作者简介: 薛小锋(1982-),西北工业大学讲师、博士,主要从事飞行器设计、可靠性工程研究。
相关功能
PDF(1437KB) Free
打印本文
把本文推荐给朋友
作者相关文章
薛小锋  在本刊中的所有文章
王远卓  在本刊中的所有文章
路成  在本刊中的所有文章

参考文献:
[1] GOODAY A J, MOGUILEVSKY A. Sinking Velocities of Some Halocyprid Ostracods[J]. Journal of Experimental Marine Biology and Ecology, 1975, 19(2):105-116
[2] 冯蕴雯,刘思宏,薛小锋,等. 基于实测值的舰载机着舰下沉速度影响性分析[J]. 航空学报, 2015, 36(11):3578-3585 FENG Yunwen. LIU Sihong, XUE Xiaofeng. et al. Sinking Velocity Impact Anaysis of Carrier-Based Aircraft Based on Test Data[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(11):3578-3585(in Chinese)
[3] Naval Air Systems Command. Airplane Strength and Rigidity, Ground Loads for Navy Acquired Airplanes[S]. MIL-A-8863C(AS), 1993
[4] Naval Air Systems Command. Aircraft Structures[S]. JSSG-2006, 1998
[5] MICKLOS R P. Carrier Landing Parameters from Survey 45, Fleet and Training Command Aircraft Landing Aboard USS Enterprise CVN-65(Appendices B through R)[R]. NADC-91124-60, 1991
[6] GENG J Z, YAO H L, DUAN Z Y. Determining the Approach Speed Envelope of Carrier Aircraft[J]. Engineering Sciences, 2013, 11(6):19-23
[7] XIA G H, DONG R, XU J T, et al. Linearized Model of Carrier-Based Aircraft Dynamics in Final-Approach Air Condition[J]. Journal of Aircraft, 2016, 53(1):33-47
[8] WANG Z Q, SUN X Y, ZHOU S, et al. Dynamics Analysis of Aircraft Landing on the Pitching Deck[J]. Key Engineering Materials, 2011, 467/468/469:579-582
[9] ZHU Q D, MENG X, ZHANG Z. Simulation Research on Motion Law of Arresting Hook during Landing[J]. Applied Mechanics and Materials, 2013, 300/301:997-1002
[10] WANG L P, ZHU Q D, ZHANG Z, et al. Modeling Pilot Behaviors Based on Discrete-Time Series during Carrier-Based Aircraft Landing[J]. Journal of Aircraft, 2016, 53(6):1922-1931
[11] 王钱生. 关于舰载机着舰下沉速度的初步研究[J]. 飞机设计, 2007, 27(3):1-6 WANG Qiansheng. A Preliminary Research of Sinking Velocity for Carrier-Based Aircraft[J]. Aircraft Design, 2007, 27(3):1-6(in Chinese)
[12] 聂宏,彭一明,魏小辉,等. 舰载飞机着舰拦阻动力学研究综述[J]. 航空学报, 2014, 35(1):1-12 NIE Hong, PENG Yiming, WEI Xiaohui, et al. Overview of Carrier-Based Aircraft Arrested Deck-Landing Dynamics[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1):1-12(in Chinese)
[13] 姚念奎,隋福成,王成波. 舰载机的自由飞行钩住情况[J]. 飞机设计, 2011, 31(6):10-15 YAO Niankui, SUI Fucheng, WANG Chengbo. Free Flight Engagement Condition of Carrier-Based Aircraft[J]. Aircraft Design, 2011, 31(6):10-15(in Chinese)
[14] 许东松,王立新,贾重任. 舰载飞机着舰过程的参数适配特性[J]. 航空学报, 2012, 33(2):199-207 XU Dongsong, WANG Lixin, JIA Zhongren. Parameter Matching Characteristics of Carrier-Based Aircraft during Deck Landing Process[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(2):199-207(in Chinese)
[15] 李启明,冯蕴雯,于立明. 飞机拦阻着陆动力学分析与仿真[J]. 计算机仿真, 2010, 27(1):27-31 LI Qiming, FENG Yunwen, YU Liming. Kinetics Analysis and Simulation of Aircraft Arrested Shore-Landing[J]. Computer Simulation, 2010, 27(1):27-31(in Chinese)
[16] 罗青,冯蕴雯,冯元生. 基于弯折波的舰载机拦阻着舰动力学分析及仿真研究[J]. 机械强度, 2009, 31(4):543-547 LUO Qing, FENG Yunwen, FENG Yuanheng. Dynamic Analysis and Simulation of Carrier Aircraft Arrested Deck-Landing Based on Kink-Wave[J]. Journal of Mechanical Strength, 2009, 31(4):543-547(in Chinese)
[17] 崔俊华,聂宏,张明,等. 舰载机起落架缓冲性能设计优化[J]. 计算机辅助工程, 2011, 20(1):88-93 CUI Junhua, Nie Hong, Zhang Ming, et al. Design Optimization on Shock Absorbing Performance of Carrier-Based Aircraft Landing Gear[J]. Computer Aided Engineering, 2011, 20(1):88-93(in Chinese)
[18] 魏小辉,聂宏. 舰载机起落架落震性能动力学仿真分析[J]. 中国机械工程, 2007, 18(5):520-523 WEI Xiaohui, NIE Hong. Study on Landing Impact Force of Carrier-Based Aircraft Landing Gears[J]. China Mechanical Engineering, 2007, 18(5):520-523(in Chinese)
[19] 周胜明. 航母甲板运动对舰载机着舰影响仿真分析[J]. 飞机设计, 2012, 32(6):28-32 ZHOU Shengming. Simulation Analysis on Influence of Carrier Deck Motion on Carrier-Based Aircraft Landing[J]. Air-Craft Design, 2012, 32(6):28-32(in Chinese)
[20] 许东松,刘星宇,王立新. 航母运动对舰载飞机着舰安全性的影响[J]. 北京航空航天大学学报, 2011, 37(3):289-294 XU Dongsong, LIU Xingyu, WANG Lixin. Influence of Carrier Motion on Landing Safety for Carrier-Based Airplanes[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(3):289-294(in Chinese)
[21] LU C, FENG Y W, LIEM R P, et al. Improved Kriging with Extremum Response Surface Method for Structural Dynamic Reliability and Sensitivity Analyses[J]. Aerospace Science and Technology, 2018, 76:164-175