论文:2019,Vol:37,Issue(2):211-217
引用本文:
马晓川, 闫杰, 符文星, 陈康. 满足增益相位裕度的自动驾驶仪结构化H综合[J]. 西北工业大学学报
MA Xiaochuan, YAN Jie, FU Wenxing, CHEN Kang. Autopilot Structured H Synthesis for Satisfying Gain and Phase Margin Constraints[J]. Northwestern polytechnical university

满足增益相位裕度的自动驾驶仪结构化H综合
马晓川, 闫杰, 符文星, 陈康
西北工业大学 航天学院, 陕西 西安 710072
摘要:
针对具有静不稳定特性的高超声速飞行器,提出了一种同时满足增益裕度和相位裕度要求的飞行器自动驾驶仪设计方法。在预先设定自动驾驶仪结构的前提下,建立满足系统增益和相位裕度的H范数性能指标,使用结构化H综合方法求解使性能指标H范数指标最优的自动驾驶仪参数。控制系统稳定裕度由标称系统增益放大补灵敏度传递函数的H范数约束。这种约束方法把对系统的稳定裕度约束转化为复平面上开环系统Nyquist曲线到满足系统稳定裕度圆盘边界的距离约束。求解控制器参数时,在控制器设计指标中引入调节参数,通过调节参数的迭代变化,改变开环系统Nyquist曲线与稳定裕度圆盘边界的距离,减小控制器的保守性。这种自动驾驶仪的设计方法可同时适用于静稳定系统和静不稳定系统。将此方法应用在高超声速飞行器过载跟踪自动驾驶仪的设计中,仿真结果表明,自动驾驶仪具有良好的动态和稳态性能,并且控制器满足期望的稳定裕度。
关键词:    H综合    自动驾驶仪    幅值裕度    相位裕度    过载跟踪控制   
Autopilot Structured H Synthesis for Satisfying Gain and Phase Margin Constraints
MA Xiaochuan, YAN Jie, FU Wenxing, CHEN Kang
School of Astronautics, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
Aiming at the static unstable Hypersonic vehicle, a method for designing H autopilot to satisfy gain margin and phase margin is proposed. Structured H synthesis is used to synthesize the autopilot under the fixed structure. The gain margin and phase margin were constrained by using H norm of the complementary of the scaled plant. The requirement for the gain margin and phase margin is represented by the distance between the open loop Nyquist curve and the circle that represents the gain margin and phase margin in the complex plane. The distance is adjusted by tuning the parameter of performance specifications automatically to reduce the conservatism of the controller. The present method is applicable to both static stable vehicle and static unstable vehicle, and a three loops acceleration tracking autopilot is design. The numerical simulations have demonstrated that the autopilot satisfys the performance specifications, gain margin and phase margin simultaneously.
Key words:    structured H synthesis    autopilot    gain margin    phase margin    acceleration tracking   
收稿日期: 2018-04-17     修回日期:
DOI: 10.1051/jnwpu/20193720211
基金项目: 国家自然基金(61503302)资助
通讯作者:     Email:
作者简介: 马晓川(1986-),西北工业大学博士研究生,主要从事高超声速飞行器控制系统研究。
相关功能
PDF(1362KB) Free
打印本文
把本文推荐给朋友
作者相关文章
马晓川  在本刊中的所有文章
闫杰  在本刊中的所有文章
符文星  在本刊中的所有文章
陈康  在本刊中的所有文章

参考文献:
[1] RODRIGUEZ A, DICKESON J, CIFDALOZ O, et al. Modeling and Control of Scramjet-Powered Hypersonic Vehicles:Challenges, Trends, and Tradeoffs[C]//AIAA Guidance, Navigation and Control Conference and Exhibit, 2008
[2] 贾子安, 张陈安, 王柯穆, 等. 乘波体布局高超声速飞行器纵向静稳定特性分析[J]. 中国科学, 2014, 44(10):1114-1122 JIA Zian, ZHANG Chenan, WANG Kemu, et al. Longitudinal Static Stability Analysis of Hypersonic Waveriders[J]. Science China, 2014, 44(10):1114-1122(in Chinese)
[3] 罗文莉, 李道春, 向锦武. 吸气式高超声速飞行器大迎角气动特性分析[J]. 航空学报, 2015, 36(1):223-231 LUO Wenli, LI Daochun, XIANG Jinwu. Aerodynamic Characteristics Analysis of Air-Breathing Hypersonic Vehicle at High Angle of Attack[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):223-231(in Chinese)
[4] 苏二龙, 罗建军, 闵昌万. 高超声速飞行器纵向大攻角非线性失稳分析与控制[J]. 航空学报, 2016, 37(S1):S80-S90 SU Erlong, LUO Jianjun, MIN Changwan. Analysis and Control of Nonlinear of Stability of Longitudinal Flight Dynamics of Hypersonic Vehicle with High Angle of Attack[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(S1):S80-S90(in Chinese)
[5] 侯振乾,梁晓庚,杨军. 基于μ分析的导弹自动驾驶仪稳定裕度评估[J]. 计算机测量与控制, 2012, 20(8):2177-2179 HOU Zhenqian, LIANG Xiaogeng, YANG Jun. μ Analysis Based Stability Margin Clearance of Missile Autopilot[J]. Computer Measurement & Control, 2012, 20(8):2177-2179(in Chinese)
[6] GIRISH D, VIJAY P. A ‘Modern’ Look at Gain and Phase Margins-an H-Infinity/M Approach[C]//Guidance, Navigation, and Control Conference and Exhibit, 1998
[7] ZHOU KEMIN, Doyle JOHN C, Glover Keith. Robust and Optimal Control[M]. Prentice Hall, New Jersey, 1996:413-446
[8] GAHINET P, APKARIAN P. Decentralized and Fixed-Structure H Control in MATLAB[C]//Decision & Control & European Control Conference, 2012
[9] GAHINET P, APKARIAN P. Structured H Synthesis in MATLAB[J]. IFAC Proceedings Volumes, 2011, 44(1):1435-1440
[10] LOQUEN T, DE PLINVAL H, CUMER C, et al. Attitude Control of Satellites with Flexible Appendages:a Structured H Control Design[C]//AIAA Guidance, Navigation, and Control Conference, 2012
[11] KNOBLAUCH M, SAUSSIÉ D, BÉRARD C. Structured H Control for a Launch Vehicle[C]//American Control Conference, 2012
[12] SIQUEIRA D, PAGLIONE P, MOREIRA F J O. Robust Fixed Structured Output Feedback Flight Control Law Synthesis and Analysis Using Singular Structuredd Value[J]. Aerospace Science & Technology, 2013, 30(1):102-107
[13] HUGO LHACHEMI, DAVID SAUSSIE, GUCHUAN ZHU. Robust and Self-Scheduled Longitudinal Flight Control System:a Multi-Model and Structured H-infinity Approach[C]//AIAA Guidance, Navigation, and Control Conference, 2014
[14] FLORIAN S, SPILIOS T, PHILIPPE W, et al. Pitch/Yaw Channels Control Design for a 155mm Projectile with Rotating Canards, Using a H Loop-Shaping Design Procedure[C]//AIAA Guidance, Navigation, and Control Conference, 2014
[15] ORSI M A M R. A Nonsmooth Optimization Approach to H Synthesis[C]//Proceedings of the 44th IEEE Conference on Decision and Control, 2013
[16] JAMES V B, DIDIER H, ADRIAN S L, et al. Stabilization via Nonsmooth, Nonconvex Optimization[J]. IEEE Trans on Automatic Control, 2006, 51(11):1760-1769
[17] BOMPART V, NOLL D, APKARIAN P. Second-Order Non-Smooth Optimization for H Synthesis[J]. Numerische Mathematik, 2007, 107(3):433-454
[18] JASON T P, ANDREA S, STEPHEN Y, et al. Control-Oriented Modeling of an Air-Breathing Hypersonic Vehicle[J]. Journal of Guidance Control & Dynamics, 2007, 30(3):856-869