论文:2018,Vol:36,Issue(6):1202-1208
引用本文:
王文浩, 苟文选, 王富生, 刘伟, 岳珠峰. 某输流管道两种管壁应力作用下的屈曲分析[J]. 西北工业大学学报
Wang Wenhao, Gou Wenxuan, Wang Fusheng, Liu Wei, Yue Zhufeng. Buckling Analysis on a Pipe Conveying Fluid under Two Stresses[J]. Northwestern polytechnical university

某输流管道两种管壁应力作用下的屈曲分析
王文浩1, 苟文选2, 王富生2, 刘伟2, 岳珠峰2
1. 太原科技大学 机械工程学院, 山西 太原 030024;
2. 西北工业大学 力学与土木建筑学院, 陕西 西安 710129
摘要:
压力管道在航空、航天、机械工程、工业与民用建筑领域以及其他领域有着广泛的应用,失稳屈曲是其主要失效形式之一。首先将复杂的流固耦合问题简化为2种管壁应力作用下的管道屈曲问题。这2种应力是指:垂直于管壁的压应力和平行于管壁的切应力。其次,采用有限元方法分析了压力管道工作状态和非工作状态的屈曲性能。通过求解和分析,得出以下主要结论:第一,切应力不变,随着压应力的增大特征值屈曲临界载荷增大,而非线性屈曲临界载荷减小。第二,压应力不变,切应力与轴向压力方向相同时,随着切应力绝对值增大,屈曲临界载荷减小;切应力与轴向压力方向相反时,随着切应力绝对值增大,屈曲临界载荷增大。
关键词:    管道    屈曲    非线性    压应力    切应力   
Buckling Analysis on a Pipe Conveying Fluid under Two Stresses
Wang Wenhao1, Gou Wenxuan2, Wang Fusheng2, Liu Wei2, Yue Zhufeng2
1. School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China;
2. School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi'an 710129, China
Abstract:
Pressure pipes have broad applications in aviation, space flight, mechanical engineering, industrial and civil architecture etc. Instability destruction is their main failure mode. Firstly, in this paper, a complex fluid-solid coupling problem was simplified as a buckling problem of a pipe under two stresses which were along the pipe wall. The two stresses consisted of a compressive stress which was perpendicular to the pipe wall and a tangential stress which was parallel to the pipe wall. Secondly, the buckling performs of the pressured pipe were discussed by finite element analysis method under a working state and an off-working state, respectively. Some obtained conclusions were drawn as follows by the analysis in this paper.1). Provided the tangential stress is unchanged, by increasing compressive stress eigenvalue buckling critical load increases and nonlinear buckling critical load decreases.2). Provided the compressive stress is unchanged, when the direction of the tangential stress is same as that of the axial pressure, by increasing the absolute value of tangential stress the buckling critical load decreases; provided the compressive stress is unchanged, when the direction of the tangential stress is in the opposite direction of the axial pressure, by increasing the absolute value of tangential stress the buckling critical load increases.
Key words:    pipe    buckling    nonlinear    compressive stress    tangential stress   
收稿日期: 2017-06-12     修回日期:
DOI:
基金项目: 山西省"1331工程"重点学科建设计划经费、太原科技大学博士科研启动基金(20182029)、山西省自然科学基金(201701D121072)、航空科学基金(2016ZD53036)、陕西省自然科学基础研究计划(2018JQ1030)、中央高校基本科研业务费专项基金(3102017JGHK02006,3102015QD0035)与山西省互联网+3D打印协同创新中心资助
通讯作者:     Email:
作者简介: 王文浩(1976-),太原科技大学讲师、博士,主要从事先进材料的力学行为、结构设计及优化设计研究。
相关功能
PDF(2089KB) Free
打印本文
把本文推荐给朋友
作者相关文章
王文浩  在本刊中的所有文章
苟文选  在本刊中的所有文章
王富生  在本刊中的所有文章
刘伟  在本刊中的所有文章
岳珠峰  在本刊中的所有文章

参考文献:
[1] 李兆超. 地下管道屈曲稳定研究[D]. 杭州:浙江大学,2012:1-7 Li Zhaochao. Investigation on Buckling Mechanics of Buried Pipes[D]. Hangzhou, Zhejiang University, 2012:1-7(in Chinese)
[2] Lee L N H, Ariman T, Chen C C. Elastic-Plastic Buckling of Buried Pipelines by Seismic Excitation[J]. International Journal of Soil Dynamics & Earthquake Engineering, 1984, 3(4):168-173
[3] Ji L K, Zheng M, Chen H Y, et al. Apparent Strain of a Pipe at Plastic Bending Buckling State[J]. Journal of the Brazilian Society of Mechanical Sciences & Engineering, 2015, 37(6):1811-1818
[4] Yudo H, Yoshikawa T. Buckling Phenomenon for Imperfect Pipe under Pure Bending[J]. Journal of Marine Science & Technology, 2015, 20(4):703-710
[5] 金浏, 李鸿晶. 逆冲断层作用下埋地管道屈曲分析[J]. 工程力学, 2011, 28(12):98-104 Jin Liu, Li Hongjing. Buckling Analysis of Buried Pipeline Subject to Reverse Fault Crossings[J]. Engineering Mechanics, 2011,28(12):98-104(in Chinese)
[6] Krishnan N M A, Ghosh D. Buckling Analysis of Cylindrical Thin-Shells Using Strain Gradient Elasticity Theory[J]. Meccanica, 2017, 52(6):1369-1379
[7] Wang W, Gou W, Wang F, et al. Effects of Connective Parts on Stability of Folded Stringers Stiffened Composite Panel[J]. Composite Structures, 2016, 147:16-24
[8] 中华人民共和国建设部. 中华人民共和国国家标准:室外给水设计规范[S]. GB50013-2006 Ministry of Construction of the People's Republic of China. National Standard of the People's Republic of China. Code for Design of Outdoor Water Supply Engineering[S]. GB50013-2006(in Chinese)
[9] 中华人民共和国建设部. 中华人民共和国国家标准:钢结构设计规范[S]. GB50017-2003 Ministry of Construction of the People's Republic of China. Code for Design of Steel Structures[S]. GB50017-2003(in Chinese)
[10] Gupta N K. Some Aspects of Axial Collapse of Cylindrical Thin-Walled Tubes[J]. Thin-Walled Structures, 1998, 32:111-126
[11] Asadi H. Numerical Simulation of the Fluid-Solid Interaction for CNT Reinforced Functionally Graded Cylin-Drical Shell in Thermal Environmaents[J]. Acta Astronautica, 2017, 138:214-224
[12] 陈绍蕃. 钢结构稳定设计指南[M]. 3版. 北京:中国建筑工业出版社,2013:201-208 Chen Shaofan. Design Guideline for Stability of Steel Structures[M]. 3rd ed. Beijing, China Architecture & Building Press, 2013:201-208(in Chinese)