论文:2018,Vol:36,Issue(3):487-495
引用本文:
权凌霄, 孙冰江, 赵劲松, 李东. 航空弯曲液压管路流固耦合振动频响分析[J]. 西北工业大学学报
Quan Lingxiao, Sun Bingjiang, Zhao Jinsong, Li Dong. Frequency Response Analysis of Fluid-Structure Interaction Vibration in Aircraft Bending Hydraulic Pipe[J]. Northwestern polytechnical university

航空弯曲液压管路流固耦合振动频响分析
权凌霄1,3, 孙冰江1, 赵劲松1, 李东1,2
1. 燕山大学 河北省重型机械流体动力传输与控制实验室, 河北 秦皇岛 066004;
2. 中航工业金城南京机电液压工程研究中心, 江苏 南京 210000;
3. 燕山大学 先进锻压成形技术与科学教育部重点实验室, 河北 秦皇岛 066004
摘要:
针对航空弯曲管路,建立其流固耦合14-方程模型,并利用拉氏变换将其变换至频域进行求解;对含单个弯管的管路,利用14-方程分析在管路长度变化及不变化时,弯曲参数对管路频域响应的影响规律;同时,对含2个弯管的管路,分析不同跨度时,弯曲参数对管路固有频率的影响;最终,通过模态敲击实验,验证仿真的准确性。经过上述分析,得到以下结论:弯曲角度对管路固有特性影响较大,弯曲角度越小,管路固有频域越高,然而,弯曲半径的影响在于是否会造成管长变化,通常情况下,弯曲半径的增加会导致管路长度增加,从而导致其固有频率降低。
关键词:    流体传动与控制    频域振动响应    流固耦合振动    弯曲液压管路    国产大飞机   
Frequency Response Analysis of Fluid-Structure Interaction Vibration in Aircraft Bending Hydraulic Pipe
Quan Lingxiao1,3, Sun Bingjiang1, Zhao Jinsong1, Li Dong1,2
1. Hebei Provincial Key Laboratory of Heavy Machinery Fluid Power Transmission and Control, Yanshan University, Qinhuangdao 066004, China;
2. Nanjing Engineering Institute of Aircraft System Jincheng AVIC, Nanjing 210000, China;
3. Key Laboratory of Advanced Forging & Stamping Technology and Science, Ministry of Education of China(Yanshan University), Qinhuangdao 066004, China
Abstract:
For the aviation bending pipe, the fluid-structure interaction 14-equation model is established, and the Laplace transform is used to solve the problem in the frequency domain. For the pipeline with a single elbow, the influence of bending parameters on the frequency response of the pipeline in the frequency domain is analyzed by using the 14-equation. At the same time, for pipelines containing two elbows, we analyze the influence of bending parameters on the natural frequency of the pipeline in different spans. In the end, the accuracy of the simulation is verified by the modal knocking test. Through the above analysis, we reach the following conclusion:the bending angle of the pipeline is greatly influenced by inherent characteristics, the smaller the bending angle, the higher the pipeline's inherent frequency domain. However, the effect of bending radius will cause the change in length. Usually, the increase of bending radius leads to pipe length increasing, resulting in its inherent frequency decreasing.
Key words:    fluid transmission and control    frequency domain vibration response    fluid-structure interaction vibration    bending hydraulic pipeline    aircraft   
收稿日期: 2017-04-08     修回日期:
DOI:
基金项目: 国家重点基础研究发展计划(2014CB046405)与国家自然科学基金(51375423)资助
通讯作者:     Email:
作者简介: 权凌霄(1977-),燕山大学副教授、博士,主要从事液压系统振动及控制研究。
相关功能
PDF(3012KB) Free
打印本文
把本文推荐给朋友
作者相关文章
权凌霄  在本刊中的所有文章
孙冰江  在本刊中的所有文章
赵劲松  在本刊中的所有文章
李东  在本刊中的所有文章

参考文献:
[1] 白欢欢. 基于变刚度弹性支承的液压管路流固耦合振动的数值分析[D]. 秦皇岛:燕山大学, 2014 Bai Huanhuan. Numerical Analysis on the Fluid-Solid Coupling Vibration of Hydraulic Pipeline with Elastic Support[D]. Qinhuangdao, Yanshan University, 2014(in Chinese)
[2] 权凌霄, 孔祥东, 俞滨, 等. 液压管路流固耦合振动机理及控制研究现状与发展[J]. 机械工程学报, 2015, 51(18):175-183 Quan Lingxiao, Kong Xiangdong, Yu Bin, et al. Research Status and Trends on Fluid-Structure Interaction Vibration Mechanism and Control of Hydraulic Pipeline[J]. Journal of Mechanical Engineering, 201551(18):175-183(in Chinese)
[3] Li Xin, Wang Shaoping. Flow Field and Pressure Loss Analysis of Junction and its Structure Optimization of Aircraft Hydraulic Pipe System[J]. Chinese Journal of Aeronautics, 2013, 26(4):1080-1092
[4] 权凌霄, 李东, 刘嵩,等. 膨胀环频域特性影响因素分析[J]. 浙江大学学报:工学版, 2016, 50(6):1065-1072 Quan Lingxiao, Li Dong, Liu Song, et al. Influence Factors Analysis on Frequency Domain Characteristics of Expansion Loop[J]. Journal of Zhejiang University:Engineering Science, 2016, 50(6):1065-1072(in Chinese)
[5] Liu G, Li Y H. Vibration Analysis of Liquid-Filled Pipelines with Elastic Constraints[J]. Journal of Sound and Vibration, 2011,330(13):3166-3181
[6] Ktin J, Bajsi I. Fluid-Dynamic Loading of Pipes Conveying Fluid with a Laminar Mean-Flow Velocity Profile[J]. Journal of Fluids and Structures, 2014, 50:171-183
[7] Xu Y Z, Johnston D N, Jiao Z X, et al. Frequency Modelling and Solution of Fluid-Structure Interaction in Complex Pipelines[J]. Journal of Sound and Vibration, 2014, 333:2800-2822
[8] 陈果, 罗云, 郑其辉,等. 复杂空间载流管路系统流固耦合动力学模型及其验证[J]. 航空学报, 2013, 34(3):597-609 Chen Guo, Luo Yun, Zheng Qihui, et al. Fluid-Solid Coupling Dynamics Model of Complex Space Current-Carrying Piping System and Verification[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(3):597-609(in Chinese)
[9] Ouyang X P, Gao F, Yang H Y. Two-Dimensional Stress Analysis of the Aircraft Hydraulic System Pipeline[J]. Journal of Aerospace Engineering, 2012, 226(5):532-539
[10] Li Shuaijun, Liu Gongmin, Kong Weitao. Vibration Analysis of Pipes Conveying Fluid by Transfer Matrix Method[J]. Nuclear Engineering and Design, 2014, 266:78-88
[11] Pierluigi Cesana, Neal Bitter. Modeling and Analysis of Water-Hammer in Coaxial Pipes[J]. Journal of Fluids and Structures, 2014, 51:226-239
[12] Ktin J, Bajsi I. Fluid-Dynamic Loading of Pipes Conveying Fluid with a Laminar Mean-Flow Velocity Profile[J]. Journal of Fluids and Structures, 2014, 50:171-183
[13] 李艳华, 柳贡民, 马俊. 考虑流固耦合的典型管段结构振动特性分析[J]. 振动与冲击, 2010, 29(6):50-53 Li Yanhua, Liu Gongmin, Ma Jun. Research on Fluid-Structure Interaction in Fluid-Filled Pipes[J]. Journal of Vibration and Shock, 2010, 29(6):50-53(in Chinese)
[14] Fu Y L, Jing H Q. Elbow Angle Effect on Hydraulic Pipeline Vibration Characteristics[J]. Journal of Vibration and Shock, 32(13):165-169
[15] Ouyang Xiaoping, Cao Feng, Yang Huayong. Modal Analysis of the Aircraft Hydraulic-System Pipeline[J]. Journal of Aircraft, 2012, 49(4):1168-1174
[16] Tijsseling A S. Exact Solution of Linear Hyperbolic Four-Equation System in Axial Liquid-pipe Vibration[J]. Journal of Fluids and Structures, 2003, 18:179-196
[17] Majid Mirzaei, Mahdi Najafi, Hosein Niasari. Experimental and Numerical Analysis of Dynamic Rupture of Steel Pipes under Internal High-Speed Moving Pressures[J]. International Journal of Impact Engineering, 2015, 80:27-36
[18] Wood D J, Chao S P. Effect of Pipeline Junctions on Water-Hammer Surges[J]. Transportation Engineering Journal, 2014, 97:441-457
[19] Li S J, Liu G M, Kong W T. Vibration Analysis of Pipes Conveying Fluid by Transfer Matrix Method[J]. Nuclear Engineering and Design, 2014, 266:78-88
[20] Liu G, Li Y H. Vibration Analysis of Liquid-Filled Pipelines with Elastic Constraints[J]. Journal of Sound and Vibration, 2011,330(13):3166-3181