论文:2018,Vol:36,Issue(3):403-413
引用本文:
赵宏宇, 黄得刚, 何启志, 章卫国. 高超声速飞行器非线性巡航控制器设计[J]. 西北工业大学学报
Zhao Hongyu, Huang Degang, He Qizhi, Zhang Weiguo. Design of the Nonlinear Cruise Controllers for Hypersonic Vehicle[J]. Northwestern polytechnical university

高超声速飞行器非线性巡航控制器设计
赵宏宇1, 黄得刚1, 何启志2,3, 章卫国2,3
1. 兵器工业集团 航空弹药研究院, 黑龙江 哈尔滨 150036;
2. 西北工业大学 自动化学院, 陕西 西安 710129;
3. 陕西省飞行控制与仿真技术重点实验室, 陕西 西安 710129
摘要:
飞行器高超声速定速巡航时,面临着严重的气动热弹性问题,同时系统伴有匹配不确定性、非匹配不确定性以及外界扰动的问题,为了应对上述问题,提出了一种指令滤波积分动态面Backstepping滑模控制方法,首先该方法采用指令滤波处理Backstepping的计算膨胀问题,然后引入滑模控制来解决外界扰动和匹配不确定性问题;考虑到降低滑模控制引起的抖动,同时处理非匹配不确定性问题,利用高阶滑模的思想,在每一个控制回路中增加一个附加虚拟控制状态方程,并将控制的输出作用在一个积分器上,这样不仅可以降低滑模控制器的抖动,还可以利用自适应Backstepping方法处理不匹配不确定性问题;然而引入附加控制状态方程会增加系统的阶次,这使得利用Backstepping方法设计控制器时的复杂性有所增加,为此采用动态面的方法来解决这一复杂性增加的问题。最后从整体上证明了所提方法的全局稳定性,并通过仿真实验验证了该方法的鲁棒性和有效性。
关键词:    高超声速飞行器    指令滤波    自适应    反步控制    滑模控制    气动弹性热    不确定性   
Design of the Nonlinear Cruise Controllers for Hypersonic Vehicle
Zhao Hongyu1, Huang Degang1, He Qizhi2,3, Zhang Weiguo2,3
1. Norinco Group Aviation Ammunition Insitute, Harbin, 150036, China;
2. School of Automation, Northwestern Polytechnical University, Xi'an 710129, China;
3. Shaanxi Province Key Laboratory of Flight Control and Simulation Technology, Xi'an 710129, China
Abstract:
When the hypersonic vehicle is cruising, they face the aerothermoelastic, as well as the matching, unmatched uncertainty and the disturbance. This paper presents a control method of command filter Backstepping sliding in order to cope with the problems above. First, this method does the problem of calculation expands to Backstepping using the command filter. Then, introducing sliding control settles the matching problem and disturbance; Consideration to decline the shake of sliding control and deal with the unmatched uncertainty, using the idea of higher order sliding mode control, this paper augments an addition virtual control state equation in each control loop and makes the output of the control system act on an integral, which not only declines the shake of sliding control, but also deals with the unmatched uncertainty using adaptive Backstepping. However, introducing an additional virtual control equation of state increases the system order, which has a growing in complexity when using the adaptive Backstepping to design the control system. Nevertheless the problem could be resolved by the method of dynamic surface. At last, the global stability of the proposed method is proved in theory and the effectiveness and robust of this method are verified by the simulation.
Key words:    hypersonic vehicles    command filter    adaptive    backstepping controllers    sliding controllers    aerothermoelastic    uncertainty   
收稿日期: 2017-04-02     修回日期:
DOI:
基金项目: 中央军委装备发展部联合基金(6141B)与兵器工业集团基础创新团队基金资助
通讯作者:     Email:
作者简介: 赵宏宇(1975-),兵器工业集团研高工,主要从事航空弹药发展路线规划及飞行器高级控制技术研究。
相关功能
PDF(2327KB) Free
打印本文
把本文推荐给朋友
作者相关文章
赵宏宇  在本刊中的所有文章
黄得刚  在本刊中的所有文章
何启志  在本刊中的所有文章
章卫国  在本刊中的所有文章

参考文献:
[1] Chen H, Wang J, Chen H. Aerothermal Mode and Dynamic Analysis of Hypersonic Vehicle[C]//54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Boston, 2013:1-11
[2] Falkiewicz N J, S. Cesnik C E, Crowell A R, et al. Reduced-Order Aerothermoelastic Framework for Hypersonic Vehicle Control Simulation[J]. AIAA Journal, 2011, 49(8):1625-1646
[3] McNamara J J, Friedmann P P, Powell K G, et al. Aeroelastic and Aerothermoelastic Behavior in Hypersonic Flow[J]. AIAA Journal, 2008, 46(10):2591-2610
[4] McNamara J J, Friedmann P P. Aeroelastic and Aerothermoelastic Analysis in Hypersonic Flow:Past, Present, and Future[J]. AIAA Journal, 2011, 49(6):1089-1122
[5] 黄琳, 段志生, 杨剑影, 近空间高超声速飞行器对控制科学的挑战[J]. 控制理论与应用, 2011, 28(10):1496-1505 Huang Lin, Duan Zhisheng, Yang Jianying. Challenges of Control Science in Near Space Hypersonic Aircrafts[J]. Control Theory & Applications, 2011, 28(10):1496-1505(in Chinese)
[6] Lind R. Linear Parameter-Varying Modeling and Control of Structural Dynamics with Aerothermoelastic Effects[J]. Journal of Guidance, Control, and Dynamics, 2002, 25(4):733-739
[7] 李静, 左斌, 段洣毅, 等. 输入受限的吸气式高超声速飞行器自适应Terminal滑模控制[J]. 航空学报, 2012, 33(2):220-233 Li Jing, Zuo Bin, Duan Miyi, et al. Adaptive Terminal Sliding Mode Control for Air-Breathing Hypersonic Vehicles under Control Input Constraints[J]. Acta Aeronautica et Astronautica Sinica, 2012,33(2):220-233(in Chinese)
[8] Bolender M A. An Overview on Dynamics and Controls Modelling of Hypersonic Vehicles[C]//American Control Conference, 2009:2507-2512
[9] 孙长银, 穆朝絮, 余瑶, 近空间高超声速飞行器控制的几个科学问题研究[J]. 自动化学报, 2013, 39(11):1901-1913 Sun Changyin, Mu Chaoxu, Yu Yao. Some Control Problems for Near Space Hypersonic Vehicles[J]. Acta Automation Sinica,2013,39(11):1901-1913(in Chinese)
[10] Rodriguez A, Dickeson J, Cifdaloz O, et al. Modeling and Control of Scramjet-Powered Hypersonic Vehicles:Challenges, Trends, and Tradeoffs[C]//AIAA Guidance, Navigation and Control Conference and Exhibit, Honolulu, Hawaii, 2008:1-40
[11] Mcruer D. Design and Modeling Issues for Integrated Airframe/Propulsion Control of Hypersonic Flight Vehicles[C]//American Control Conference, Boston, 2009:729-734
[12] 张靖男, 孙未蒙, 郑志强. 高超声速武器控制技术发展探讨[J]. 航空兵器, 2006(4):11-13 Zhang Jingnan, Sun Weimeng, Zheng Zhiqiang. Discussion of Control Technique of Hypersonic Weapon[J]. Aero Weaponry, 2006(4):11-13(in Chinese)
[13] Singh S N, Brenner M. Modular Adaptive Control of a Nonlinear Aeroelastic System[J]. Journal of Guidance, Control, and Dynamics, 2008, 26(3):443-451
[14] Sun H, Yang Z, Zeng J. New Tracking-Control Strategy for Airbreathing Hypersonic Vehicles[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(3):846-859
[15] Sigthorsson D, Jankovsky P, Serrani A, et al. Robust Linear Output Feedback Control of an Airbreathing Hypersonic Vehicle[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(4):1052-1066
[16] Lisa F A S, Michael B M. Nonlinear Rboust Adaptive Control of Flexible Air-Breathing Hypersonic Vehicles[J]. Journal of Guidance, Control, And Dynamics, 2009,32(2):402-417
[17] 高道祥, 孙增圻, 罗熊, 等, 基于Backstepping的高超声速飞行器模糊自适应控制[J]. 控制理论与应用, 2008, 25(5):805-810 Gao Daoxiang, Sun Zengqi, Luo Xiong, et al. Fuzzy Adaptive Control for Hypersonic Vehicle via Backstepping Method[J]. Control Theory & Applications, 2008,25(1):805-810(in Chinese)
[18] Xu B, Huang X, Wang D, et al. Dynamic Surface Control of Constrained Hypersonic Flight Models with Parameter Estimation and Actuator Compensation[J]. Asian Journal of Control, 2014, 16(1):162-174
[19] Xu H, Mirmirani M D, Ioannou P A. Adaptive Sliding Mode Control Design for a Hypersonic Flight Vehicle[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(5):829-838
[20] Minisci E, Vasile M. Robust Design of a Reentry Unmanned Space Vehicle by Multifidelity Evolution Control[J]. AIAA Journal, 2013, 51(6):1284-1295
[21] Rollins E, Valasek J, Muse J A, et al. Nonlinear Adaptive Dynamic Inversion Applied to a Generic Hypersonic Vehicle[C]//AIAA Guidance, Navigation, and Control Conference, 2013:1-24
[22] Yip P P, Hedrick J K. Adaptive Dynamic Surface Control:a Simplified Algorithm for Adaptive Backstepping Control of Nonlinear Systems[J]. International Journal of Control, 1998, 71(5):959-979
[23] Swaroop D, Hedrick J, Yip P, et al. Dynamic Surface Control for a Class of Nonlinear Systems[J]. IEEE Trans on Automatic Control, 2000, 45(10):1893-1899
[24] Parker J T, Serrani A, Yurkovich S, et al. Doman, Control-Oriented Modeling of an Air-Breathing Hypersonic Vehicle[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(3):856-869
[25] Shaughnessy J D, Gregory I M. Trim Drag Reduction Concepts for Horizontal Takeoff Single-Stage-to-Orbit Vehicles[R]. Hampton, VA, United States:NASA Langley Research Center, 1991:1-34
[26] Keshmiri S, Colgren R, Mirmirani M. Six-DOF Modeling and Simulation of a Generic Hypersonic Vehicle for Control and Navigation Purposes[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit, 2006:1-10
[27] Shaughnessy J D, Pinckney S Z, Mcminn J D, et al. Hypersonic Vehicle Simulation Model:Winged-Cone Configuration[R]. A Hampton, VA, United States:NASA Langley Research Center, 1990:1-148
[28] Farrell J A, Polycarpou M, Sharma M, et al. Command Filtered Backstepping[J]. IEEE Trans on Automatic Control, 2009, 54(6):1391-1395
[29] Wenjie D, Farrell J A, Polycarpou M M, et al. Command Filtered Adaptive Backstepping[J]. IEEE Trans on Control Systems Technology, 2012, 20(3):566-580
[30] Zhou J, Wen C, Wang W. Adaptive Backstepping Control of Uncertain Systems with Unknown Input Time-Delay[J]. Automatica, 2009, 45(6):1415-1422
[31] 刘金坤. 滑模变结构控制及其matlab仿真[M]. 3版. 北京:清华大学, 2015:69-70 Liu Jinkun. Sliding Mode Control Desing and MATLAB Simulation[M]. Third Edition. Beijing, Tsinghua University, 2015:69-70(in Chinese)
[32] Khalil H. Nonlinear Systems[M]. Third Edition. New Jersey, Prentice Hall, 2002:111-156
[33] 洪延姬,金星,李小将,等. 临近空间飞行器技术[M]. 北京:国防工业出版社, 2012:3-40 Hong Yanji, Jin Xing, Li Xiaojiang, et al. Nearspace Aircraft Technology[M]. Beijing, National Defense Industry Press,2012:3-40(in Chinese)
相关文献:
1.杨惠珍, 王迪.基于自适应全局滑模的水下拦截器导引控制一体化设计[J]. 西北工业大学学报, 2018,36(3): 502-508
2.王明明, 朱莹莹, 张磊, 王璐, 卫宣伯, 方静.麦克纳姆轮驱动的移动机器人自适应滑模控制器设计[J]. 西北工业大学学报, 2018,36(4): 627-635
3.郭宗易, 周军, 郭建国.高速飞行器新型自适应干扰估计姿态控制律[J]. 西北工业大学学报, 2017,35(2): 177-182
4.刘瑞帆, 于云峰, 闫斌斌.基于改进hp自适应伪谱法的高超声速飞行器上升段轨迹规划[J]. 西北工业大学学报, 2016,34(5): 790-797
5.付龙飞, 田广来, 王鹏, 梁波, 皇甫宜耿.飞机防滑刹车系统滑移率自适应滑模控制研究[J]. 西北工业大学学报, 2015,33(5): 770-774
6.许行之, 高亚奎, 章卫国, 王峰, 许奇武.二元机翼非线性气动弹性自适应控制[J]. 西北工业大学学报, 2015,33(5): 775-780