论文:2018,Vol:36,Issue(2):238-245
引用本文:
杨佳佳, 贺尔铭, 胡亚琪. 浮动平台内TMD对Barge式海上浮动风机的振动抑制研究[J]. 西北工业大学学报
Yang Jiajia, He Erming, Hu Yaqi. Vibration Mitigation of the Barge-Type Offshore Wind Turbine with a Tuned Mass Damper on Floating Platform[J]. Northwestern polytechnical university

浮动平台内TMD对Barge式海上浮动风机的振动抑制研究
杨佳佳, 贺尔铭, 胡亚琪
西北工业大学 航空学院, 陕西 西安 710072
摘要:
在Barge式浮动风机的平台内配置调谐质量阻尼器(TMD),首先建立了海上浮动风机的三自由度动力学简化模型,并分别采用工程调频法和遗传算法(GA)寻求最优TMD参数;然后通过计算5种典型风浪载荷工况下有/无TMD的浮动风机的动态响应,研究了TMD在真实海洋环境中对风机的抑振增稳效果;最后在不改变Barge式浮动风机原设计的前提下,将风机部分压舱物等质量替换为TMD,研究了TMD在5种工况下的减振性能。结果表明:最优参数的TMD可使浮动平台俯仰角标准差的抑制率达到47.95%;用TMD替换部分压舱物后,平台俯仰角的减振率可达50%。因此,平台压舱物等质量替换为TMD后,可显著减少风机关键部位的振动响应及载荷。
关键词:    海上浮动风机    浮动平台TMD    参数优化    动态响应    振动抑制   
Vibration Mitigation of the Barge-Type Offshore Wind Turbine with a Tuned Mass Damper on Floating Platform
Yang Jiajia, He Erming, Hu Yaqi
School of Aeronautic, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
This paper evaluates the application of a passive control technique with a tuned mass damper on platform for the barge-type offshore wind turbine. First of all, the three degrees of freedom mathematical model for the floating wind turbine is established based on Lagrange's equations, and the Levenberg-Marquardt algorithm is adopted to estimate the parameters of the wind turbine. Then, the method of frequency tuning which is utilized in engineering projects and genetic algorithm are employed respectively to simulate the optimum parameters of the tuned mass damper. The vibration mechanism about the phase-angle difference between tuned mass damper and floating platform is analyzed. Finally, the dynamic responses of floating wind turbine with/without tuned mass damper are calculated under five typical wind and wave load cases, and the vibration mitigation effects are researched in marine environment. Partial ballast is substituted by the equal mass of tuned mass damper due to the mass of floating platform with tuned mass damper would increase obviously, which would change the design of the wind turbine, and the vibration mitigation is also simulated in five typical load cases. The results show that the suppression rate of standard deviation of platform pitch is up to 47.95%, after substituting the partial mass of ballast, the suppression rate is 50%. Therefore, the dynamic responses of the barge-type floating wind turbine would be reduced significantly when the ballast is replaced by the equal mass of the tuned mass damper on floating platform.
Key words:    offshore wind turbines    mathematical model    Lagrange's equations    Levenberg-Marquardt algorithm    tuned mass damper(TMD)    structural parameters    optimization    frequency tuning    genetic algorithm(GA)    simulation    dynamic response    vibration mitigation    structural design    vibration analysis   
收稿日期: 2017-05-12     修回日期:
DOI:
基金项目: 国家自然科学基金(51675426)资助
通讯作者:     Email:
作者简介: 杨佳佳(1989-),西北工业大学博士研究生,主要从事结构动力学与振动控制研究。
相关功能
PDF(1889KB) Free
打印本文
把本文推荐给朋友
作者相关文章
杨佳佳  在本刊中的所有文章
贺尔铭  在本刊中的所有文章
胡亚琪  在本刊中的所有文章

参考文献:
[1] Sun X, Huang D. The Current State of Offshore Wind Energy Technology Development[J]. Energy, 2012, 41(1):298-312
[2] Breton S P, Moe G. Status, Plans and Technologies for Offshore Wind Turbines in Europe and North America[J]. Renewable Energy, 2009, 34(3):646-654
[3] Snyder B, Kaiser M J. Ecological and Economic Cost-Benefit Analysis of Offshore Wind Energy[J]. Renewable Energy, 2009, 34(6):1567-1578
[4] Solingen E, Wingerden J W. Linear Individual Pitch Control Design for Two-Bladed Wind Turbines[J]. Wind Energy, 2015, 18(4):677-697
[5] Magar K T, Balas M J, et al. Direct Adaptive Control for Individual Blade Pitch Control of Wind Turbines for Load Reduction[J]. Journal of Intelligent Material Systems and Structures, 2015, 26(12):1564-1572
[6] Jiang Z, Karimirad M, et al. Dynamic Response Analysis of Wind Turbines under Blade Pitch System Fault, Grid Loss, and Shutdown Events[J]. Wind Energy, 2014, 7(9):1385-1409
[7] Namik H, Stol K. Performance Analysis of Individual Blade Pitch Control of Offshore Wind Turbines on Two Floating Platforms[J]. Mechatronics, 2011, 21(4):691-703
[8] Lackner M A. Controlling Platform Motions and Reducing Blade Loads for Floating Wind Turbines[J]. Wind Energy 2009, 33(6):541-543
[9] Colwell S, Basu B. Tuned Liquid Column Dampers in Offshore Wind Turbines for Structure Control[J]. Engineering Structures, 2009, 31(2):358-368
[10] Stewart G M, Lackner M A. The Impact of Passive Tuned Mass Dampers and Wind-Wave Misalignment on Offshore Wind Turbine Loads[J]. Engineering Structures, 2014, 73:54-61
[11] Jonkman J M. Dynamics of offshore Floating Wind Turbines Model Development and Verification[J]. Wind Energy, 2009, 12(5):459-492
[12] Tumewu Y, Petrone C, et al. Numerical Simulation of the Influence of Platform Pitch Motion on Power Generation Steadiness in Floating Offshore Wind Turbines[J]. Environmental Science & Sustainable Development, 2017, 1(2):1-10
[13] Lackner M A, Rotea M A. Passive Structure Control of Offshore Wind Turbines[J]. Wind Energy, 2011, 14(3):373-388
[14] Lackner M A, Rotea M A. Structural Control of Floating Wind Turbines[J]. Mechatronics, 2011, 21(4):704-719
[15] Stewart G M, Lackner M A. Offshore Wind Turbine Load Reduction Employing Optimal Passive Tuned Mass Damping Systems[J]. IEEE Trans on Control System Technology, 2013, 21(4):1090-1104
[16] Hu Y, He E. Active Structural Control of a Floating Wind Turbine With a Stroke-Limited Hybrid Mass Damper[J]. Journal of Sound and Vibration, 2017, 410:447-472
[17] He E, Hu Y. Optimization Design of Tuned Mass Damper for Vibration Suppression of a Barge-Type Offshore Floating Wind Turbine[J]. Journal of Engineering for The Maritime Environment, 2017, 231(1):302-315
相关文献:
1.贺尔铭, 胡亚琪, 张扬.基于TMD的海上浮动风力机结构振动控制研究[J]. 西北工业大学学报, 2014,32(1): 55-61