论文:2017,Vol:35,Issue(5):793-797
引用本文:
高逦, 孙鹏, 矫丽颖, 王逸帆. 高超声速飞行器机翼颤振主动控制系统[J]. 西北工业大学学报
Gao Li, Sun Peng, Jiao Liying, Wang Yifan. Adaptive Control of a Shape Memory Spring Actuation for Twist Wing[J]. Northwestern polytechnical university

高超声速飞行器机翼颤振主动控制系统
高逦1, 孙鹏2, 矫丽颖2, 王逸帆2
1. 西北工业大学 计算机学院, 陕西 西安 710072;
2. 西北工业大学 动力与能源学院, 陕西 西安 710072
摘要:
飞行器飞行过程中由于气动弹性效应会引起机翼颤振,并且随着飞行马赫数(速度)的提高,颤振类型会发生改变,对飞机结构的破坏性增大,因此若不能有效抑制机翼颤振将对高超音速飞行器飞行造成严重后果。为此,提出了一种形状记忆弹簧扭转机翼自适应控制系统,该系统采用反馈控制,通过记忆弹簧驱动控制产生相应的变形以稳定结构抑制颤振。根据驱动结构设计、理论推导以及测试实验成功验证了该方案的可行性,采用参数自整定模糊PID控制算法,通过控制实验得到了SMA弹簧驱动器的偏转角度与电流强度的关系,在控制电流为8 A时,偏转角度在6s内可达到60°,响应速度10°/s。事实表明,采用文中设计的形状记忆弹簧扭转机翼自适应控制系统,可以对机翼翼面受力状态进行自适应监测与控制,使机翼结构吸取的能量等于消耗的能量,保持等幅振动而不发生颤振。
关键词:    高超音速飞行器    马赫数    记忆合金弹簧    PID控制    颤振   
Adaptive Control of a Shape Memory Spring Actuation for Twist Wing
Gao Li1, Sun Peng2, Jiao Liying2, Wang Yifan2
1. School of Computer Science, Northwestern Polytechnical University, Xi'an 710072, China;
2. School of Power and Energy, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
In the process of flight, airfoil flutter will be caused by the aero-elastic effect, and as the flight Mach number increases, the type of flutter will change, the destructive effect of the aircraft structure increases. Therefore, if the flutter of the hypersonic aircraft has not been effectively inhibited, it will cause serious consequences. Thus, an adaptive control system of shape memory spring torsion wing have been conducted to restrain the flutter of the wings. The purpose of the experimental test was to demonstrate the mechanism with the SMA Spring actuator has the ability to drive the wing to rotate around the central axis. A description of the system requirements associated with the SMA Spring actuator and its integration into the wing structure are provided and discussed. The relationship between the deflection angle and the current intensity of the SMA Spring actuator was obtained through the control of the fuzzy PID control algorithm. The deflection angle can reach 60° and the response speed is 10°/s in 6s when the control current is 8A. Test results showed that the SMA Spring actuator was able to successfully twist the wing according to the feedback control rule, the airfoil can be subjected to adaptive monitoring and controlling, so that the energy absorbed by the wing structure remain equal to the energy consumed, which achieve the purpose of suppressing the flutter.
Key words:    hypersonic vehicles    Mach number    shape memory alloy spring    PID control    flutter   
收稿日期: 2017-02-12     修回日期:
DOI:
基金项目: 国家自然科学基金(61471299)资助
通讯作者:     Email:
作者简介: 高逦(1969-),女,西北工业大学副教授,主要从事网络信息安全、系统工程及数据处理研究。
相关功能
PDF(1098KB) Free
打印本文
把本文推荐给朋友
作者相关文章
高逦  在本刊中的所有文章
孙鹏  在本刊中的所有文章
矫丽颖  在本刊中的所有文章
王逸帆  在本刊中的所有文章

参考文献:
[1] Pendleton E W, Denis B, Peter B F, et al. Active Aeroelastic Wing Flight Research Program:Technical Program and Model Analytical Development[J]. Journal of Aircraft, 2012, 37(4):554-561
[2] Mabe James, F Calkins, G Butler. Boeing's Variable Geometry Chevron, Morphing Aerostructure for Jet Noise Reduction[C]//Smart Structures and Materials International Society for Optics and Photonics, 2006:199-210
[3] Song Gangbing. Design and Control of a Proof-of-Concept Active Jet Engine Intake Using Shape Memory Alloy Actuators[J]. Smart Structures & Systems, 2004, 7(1):1-13
[4] Ricci Sergio A. Scotti, M Terraneo. Design, Manufacturing and Preliminary Test Results of an Adaptive Wing Camber Model[C]//Structural Dynamics and Material Conference and Exhibit, 2006:1-12
[5] 李伟,熊克,陈宏,等. 含有SMA弹簧驱动器的可变倾斜角翼梢小翼研究[J]. 航空学报, 2012, 33(1):22-33 Li Wei, Xiong Ke, Chen Hong, et al. Kesearch on Variable Cont Angle Winglets with Shape Memory Alloy Spring Actuators[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(1):22-33(in Chinese)
[6] Zhang W W, Ye Z Y. Transonic Flutter Suppression by Active Control Surface[J]. Journal of Vibration Engineering, 2007, 20(3):224-231
[7] Li Ming. Active Flutter Suppression of a Two-dimensional Airfoil Section Using μ Synthesis[J]. Journal of Vibration Engineering, 2007, 28(2):340-343
[8] Lagoudas D C, Qidwai M A. Modeling of Thermomechanical Response of Porous Shape Memory Alloys[C]//Proceedings of SPIE for Optical Engineering, 2000:496-508
[9] Chironis, Nicholas P, N Sclater. Mechanisms and Mechanical Devices Sourcebook[M]. McGraw-Hill, 2003:271-300
[10] He Shizhong. Fuzzy Self-Tuning of PID Controllers[J]. Fuzzy Sets & Systems, 1993, 56(1):37-46
[11] Kadkhodaei M. Modeling of the Cyclic Thermomechanical Response of SMA Wires at Different Strain Rates[J]. Smart Materials & Structures, 2007, 16(6):1011