论文:2017,Vol:35,Issue(1):74-81
引用本文:
张书扬, 张顺琦, 李靖, 白晶, 秦现生. 基于PID算法的压电智能结构形状与主动振动控制[J]. 西北工业大学学报
Zhang Shuyang, Zhang Shunqi, Li Jing, Bai Jing, Qin Xiansheng. Shape Control and Active Vibration Control of Piezoelectric Smart Structures with PID algorithm[J]. Northwestern polytechnical university

基于PID算法的压电智能结构形状与主动振动控制
张书扬1, 张顺琦1,2, 李靖1, 白晶1, 秦现生1
1. 西北工业大学 机电学院, 陕西 西安 710072;
2. 大连理工大学 工业装备结构分析国家重点实验室, 辽宁 大连 116024
摘要:
压电智能结构在形状优化控制方面越来越多地应用于薄壁结构。为了使薄壁结构能够准确变形,首先根据一阶剪切变形假设建立压电智能结构机电耦合静力学平衡方程,用最小二乘的思想计算薄壁结构产生预定目标形变的最优静电压值。此外,为使结构变形快速稳定,减少驱动变形产生的额外振动,建立智能压电结构动力学模型,采用PID控制策略,实现对形状控制的主动振动抑制。最后以一多压电致动器悬臂梁为例,进行形状与振动控制仿真,得到良好控制效果。
关键词:    压电智能结构    形状控制    多压电致动    主动振动控制    PID策略   
Shape Control and Active Vibration Control of Piezoelectric Smart Structures with PID algorithm
Zhang Shuyang1, Zhang Shunqi1,2, Li Jing1, Bai Jing1, Qin Xiansheng1
1. School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China;
2. State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China
Abstract:
Piezoelectric smart structures are used to thin-wall structures more and more. In order to lead to more accurate deformation, the paper used the least square method to obtain the optimal static voltages by the electro-mechanically coupled static FE model according to first-order shear deformation hypothesis. And in order to deform quickly and reduce extra vibration, the paper built the electro-mechanically coupled dynamic FE model and used PID algorithm to achieve the active vibration control. Last, they are simulated by a multi-piezolayer cantilever beam.
Key words:    piezoelectric smart structure    shape control    multiple piezoelectric actuators    active vibration control    PID algorithm    ABAQUS    controllers    structural dynamics    vibration analysis   
收稿日期: 2016-09-28     修回日期:
DOI:
基金项目: 国家自然科学基金(11602193)、大连理工大学工业装备结构分析国家重点实验室开放基金(GZ15212)与机械结构力学及控制国家重点实验室开放课题(MCMS-0517G01)资助
通讯作者: 张顺琦(1984-),西北工业大学副教授,主要从事智能结构非线性建模与仿真、结构主动振动控制和压电精密致动技术研究。     Email:
作者简介: 张书扬(1994-),西北工业大学硕士研究生,主要从事压电智能结构建模与振动控制研究。
相关功能
PDF(1816KB) Free
打印本文
把本文推荐给朋友
作者相关文章
张书扬  在本刊中的所有文章
张顺琦  在本刊中的所有文章
李靖  在本刊中的所有文章
白晶  在本刊中的所有文章
秦现生  在本刊中的所有文章

参考文献:
[1] 裘进浩, 边义祥, 季宏丽, 等. 智能材料结构在航空领域中的应用[J]. 航空制造技术, 2009(3):26-29 Qiu Jinhao, Bian Yixiang, Ji Hongli, et al. Application of Smart Materials and Structures in Aviation Industry[J]. Aeronautical Manufacturing Technology, 2009(3):26-29(in Chinese)
[2] Koconis D B, Kollar L P, Springer G S. Shape Control of Composite Plates and Shells with Embedded Actuators I:Voltage Specified[J]. Journal of Composite Materials, 1994, 28(5):415-458
[3] Chee C, Tong L, Steven G P. Static Shape Control of Composite Plates Using a Curvature-Displacement Based Algorithm[J]. International Journal of Solids and Structures, 2001, 38:6381-6403
[4] Nyugen Q, Tong L. Shape Control of Smart Composite Plate with Non-Rectangular Piezoelectric Actuators[J]. Composite Structures, 2004, 66:207-214
[5] 王剑, 赵国忠, 刘宝山. 压电曲壳单元及其形状控制[J]. 工程力学, 2008, 25(4):224-229 Wang Jian, Zhao Guozhong, Liu Baoshan. Shape Control of Piezoelectric Shell Structures[J]. Engineering Mechanics, 2008, 25(4):224-229(in Chinese)
[6] 姚林泉, 丁睿. 非线性压电效应下压电层合板的弯曲[J]. 应用力学学报, 2005, 22(1):107-110 Yao Linquan, Ding Rui. Bending of Piezoelectric Laminated Plate Considering Nonlinear Piezoelectric Effect[J]. Chinese Journal of Applied Mechanics, 2005, 22(1):107-110(in Chinese)
[7] Liu G R, Dai K Y, Lim K M. Static and Vibration Control of Composite Laminates Integrated with Piezoelectric Sensors and Actuators Using the Radial Point Interpolation Method[J]. Smart Materials & Structures, 2004, 13(6):1438-1447
[8] Kang Y K, Park H C, Kim J, et al. Interaction of Active and Passive Vibration Control of Laminated Composite Beams with Piezoelectric Sensors/Actuators[J]. Materials & Design, 2002, 23:277-286
[9] Narayanan S, Balamurugan V. Finite Element Modeling of Piezolaminated Smart Structures for Active Vibration Control with Distributed Sensors and Actuators[J]. Journal of Sound and Vibration, 2003, 262(3):529-562
[10] Valliappan S, Qi K. Finite Element Analysis of a ‘Smart’ Damper for Seismic Structural Control[J]. Computers & Structures, 2003, 81(8/9/10/11):1009-1017
[11] Kulkarni S A, Bajoria K M. Finite Element Modeling of Smart Plates/Shells Using Higher Order Shear Deformation Theory[J]. Composite Structures, 2003, 62(1):41-50
[12] 季宏丽, 裘进浩, 赵永春, 等. 基于TMS320F2812的悬臂梁振动半主动控制[J]. 光学精密工程, 2009, 17(1):126-131 Ji Hongli, Qiu Jinhao, Zhao Yongchun, et al. Semi-Active Control for Structural Vibration of Cantilever Beam Based on TMS320F2812[J]. Optics and Precision Engineering, 2009, 17(1):126-131(in Chinese)
[13] Zhang S Q, Li H N, Schmidt R, et al. Disturbance Rejection Control for Vibration Suppression of Piezoelectric Laminated Thin Walled Structures[J]. Journal of Sound and Vibration, 2014, 333(5):1209-1223
[14] Zhang S Q, Schmidt R. Static and Dynamic FE Analysis of Piezoelectric Integrated Thin-Walled Composite Structures with Large Rotations[J]. Composite Structures, 2014, 112:345-357
[15] Zhang S Q, Schmidt R, Qin X S. Active Vibration Control of Piezoelectric Bonded Smart Structures Using PID Algorithm[J]. Chinese Journal of Aeronautics, 2015, 28(1):305-313