论文:2016,Vol:34,Issue(2):222-226
引用本文:
马玉娥, 王博, 熊晓枫. 玻璃纤维铝合金层板(FMLs)的疲劳损伤特性及S-N曲线[J]. 西北工业大学学报
Ma Yu'e, Wang Bo, Xiong Xiaofen. Experimental Study of Fatigue Damage of Glass-Fiber Reinforced Aluminum Laminates (FMLs)[J]. Northwestern polytechnical university

玻璃纤维铝合金层板(FMLs)的疲劳损伤特性及S-N曲线
马玉娥1, 王博1, 熊晓枫2
1. 西北工业大学 航空学院118号, 陕西 西安 710072;
2. 中航工业成都飞机设计研究所, 四川 成都 610041
摘要:
根据国内外标准和参考文献,针对玻璃纤维增强铝合金层板(FMLs)的特点设计出FMLs疲劳试验件,进行了不同载荷下的R=0.1等幅拉-拉疲劳试验。疲劳试验过程中FMLs最先在表面铝层内出现裂纹,随后表面铝层可见多条裂纹。随着循环载荷数的增加,裂纹不断扩展,并在界面出现分层现象,然后分层损伤快速扩展直至完全断裂破坏。测得了FMLs的疲劳裂纹起裂寿命和裂纹扩展寿命,给出了其疲劳寿命的规律性。得到了FMLs和同样厚度碳纤维复合材料CCF300的S-N曲线,并进行了对比。FMLs的疲劳寿命随载荷变化平缓,近似成对数趋势;在载荷大于400 MPa时FMLs的疲劳寿命与CCF300碳纤维复合材料层板相当;当疲劳载荷最大值低于300 MPa,FMLs的疲劳寿命比CCF300复材板要低。为飞机结构设计师们提供了材料基础性能和信息。
关键词:    玻璃纤维增强铝合金层板    疲劳裂纹起裂寿命    裂纹扩展寿命    分层扩展    S-N曲线   
Experimental Study of Fatigue Damage of Glass-Fiber Reinforced Aluminum Laminates (FMLs)
Ma Yu'e1, Wang Bo1, Xiong Xiaofen2
1. College of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
2. AVIC Chengdu Aircraft Design & Research Institute, Chengdu 610041, China
Abstract:
According to domestic and foreign standards and references, fatigue experimental samples of glass-fiber reinforced aluminum laminates(FMLs) were designed according to its features, and constant amplitude tension-tension fatigue experiments were performed under different fatigue loads. During testing, cracks appeared firstly on the surface aluminum layers and then many cracks were found on the surfaces. With cycles increasing, cracks grew and then the delamination developed fast until samples were broken completely. Fatigue initiation life and crack growth life of FMLs were measured and compared and their features were given. S-N curves of FMLs and CCF300 with the same thickness were obtained and compared. Fatigue life of each FML changes slowly with loads and almost seems to be logarithmic function line. When the load is higher than 400 MPa, FML has the same level fatigue life as CCF300, while its fatigue life is much lower than CCF300 if the load is smaller than 300MPa. All these provide, we believe, information useful to aircraft designers.
Key words:    aluminum    delamination    design    design of experiments    fatigue crack propagation    fatigue damage    fatigue of materials    laminates    measurements    sampling    crack growth life    delamination growth    fatigue initiation life    fractograph    FMLs    S-N curve   
收稿日期: 2015-10-20     修回日期:
DOI:
通讯作者:     Email:
作者简介: 马玉娥(1975-),女,西北工业大学教授、博士生导师,主要从事固体力学、结构疲劳与断裂复合材料力学的研究。
相关功能
PDF(4853KB) Free
打印本文
把本文推荐给朋友
作者相关文章
马玉娥  在本刊中的所有文章
王博  在本刊中的所有文章
熊晓枫  在本刊中的所有文章

参考文献:
[1] Roebroeks G H J. Towards GLARE-The Development of a Fatigue Insensitive and Damage Tolerant Aircraft Material[D]. Delft University of Technology, Delft, 1991
[2] Alaerliesten R C. Fatigue Crack Propagation and Delamination Growth in GLARE[D]. Delft University of Technology, Delft, 2005
[3] Vlot A, Gunnink J W. Fibre Metal Laminates, an Introduction[M]. Dordrech:Kluwer Academic Publishers, 2001
[4] Wu Guocai, Yang J M. The Mechanical Behaviour of GLARE Laminates for Aircraft Structures[J]. Journal of the Minerals, Metals and Materials, 2005, 57:72-79
[5] Gegory M A, Roebrocks G. A Solution to Weight, Strength, and Fatigue Problems[C]//Proceedings of the 30th Annual CIM Conference of Metallurgists, Ottawa, Cannada, 1991:4410
[6] Vries T J de. Blunt and Sharp Notch Behaviour of Glare Laminates[D]. Delft University of Technology, 2001
[7] Marissen R. Fatigue Crack Growth in ARALL, A Hybrid Aluminium-Aramid Composite Material, Crack Growth Mechanisms and Quantitative Predictions of the Crack Growth Rate[D]. Delft University of Technology, 1988
[8] Toi R. An Empirical Crack Growth Model for Fiber/Metal Laminates[C]//Proceedings of the 18th Symposium of the International Committee on Aeronautical Fatigue, Melbourne, Australia, 1995:899-909
[9] Guo Y J, Wu X R. A Theoretical Model for Predicting Fatigue Crack Growth Rates in Fibre-Reinforced Metal Laminates[J]. Fatigue & Fracture of Engineering Materials & Structures, 1998, 21:1133-1145
[10] Johnson W S, Larsen J M, Cox B N. Life Prediction for Bridged Fatigue Cracks, Life Prediction Methodology for Titanium Matrix Composites[S]. ASTM, 1996:552-572
[11] Takamatsu T, Shimokawa T, Matsumura T, et al. Evaluation of Fatigue Crack Growth Behaviour of GLARE3 Fiber/Metal Laminates Using Compliance Method[J]. Engineering Fracture Mechanics, 2003, 70:2603-2616
[12] Alderliesten R C, Homan J J. Fatigue and Damage Tolerance Issues of Glare in Aircraft Structures[J]. International Journal of Fatigue, 2006, 28:1116-1123
[13] Chang Poyu, Yang Jennming. Modeling of Fatigue Crack Growth in Notched Fiber Metal Laminates[J]. International Journal of Fatigue, 2008, 30:2165-2174
[14] Alfaro M V C, Suiker A S J, Borst R D, et al. Analysis of Fracture and Delamination in Laminates Using 3D Numerical Modeling[J]. Engineering Fracture Mechanics, 2009, 76:761-780
[15] Wang R G, Zhang L. Numerical Analysis of Delamination Buckling and Growth in Slender Laminates Composite Using Cohesive Element Method[J]. Computational Materials Science, 2010, 50:20-31
[16] 梁中全,薛元德,陈绍杰,等. GLARE层板的力学性能及其在A380客机上的应用[J]. 玻璃钢/复合材料, 2005(4):49-51 Liang Zhongquan, Xue Yuande, Chen Shaojie, et al. Performance and Application of Glare Laminates in A380 Airline[J]. Fiber Reinforced Plastics/Composites, 2005(4):49-51(in Chinese)
[17] 梁中全,武文静,朱斌,等. GLARE层板与铝合金板在力学性能上的比较及其应用[J]. 玻璃纤维, 2006(3):11-13 Liang Zhongquan, Wu Wenjing, Zhu Bin, et al. Comparison of Glare Laminate with Aluminum Alloy and Its Application[J]. Fiber Glass, 2006(3):11-13(in Chinese)
[18] 陈勇,庞宝君,郑伟,等. 纤维金属层板低速冲击试验和数值仿真[J]. 复合材料学报,2014, 31(3):733-740 Chen Yong, Pang Baojun, Zheng Wei, et al. Tests and Numerical Simulation on Low Velocity Impact Performance of Fiber Metal Laminates[J]. Acta Materiae Compositae Sinica, 2014, 31(3):733-740(in Chinese)
[19] 马玉娥,胡海威,熊晓枫. 低速冲击下FMLs、铝板和复合材料的损伤对比[J]. 航空学报,2014, 35(7):1902-1911 MA Yu'e, Hu Haiwei, Xiong Xiaofeng. Comparison of Damage in FMLs, Aluminum and Composite Panels Subjected to Low-Velocity Impact[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(7):1902-1911(in Chinese)
[20] Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials[R]. ASTM D3039
[21] Standard Test Method for Tension-Tension Fatigue of Polymer Matrix Composite Materials[R]. ASTM D3479/D3479M
相关文献:
1.夏仲纯, 马玉娥, 云双, 熊晓枫.玻璃纤维增强铝合金层板的裂纹扩展特性研究[J]. 西北工业大学学报, 2013,31(6): 891-895