论文:2015,Vol:33,Issue(6):887-891
引用本文:
朱战霞, 马家瑨, 樊瑞山. 航天器相对运动姿轨耦合特性研究[J]. 西北工业大学学报
Zhu Zhanxia, Ma Jiajin, Fan Ruishan. Coupling Analysis on Relative Motion of Spacecraft Attitude and Orbit Model Based on Dual Quaternion[J]. Northwestern polytechnical university

航天器相对运动姿轨耦合特性研究
朱战霞1,2, 马家瑨1,2, 樊瑞山1,2
1. 西北工业大学 航天学院, 陕西 西安 710072;
2. 航天飞行动力学技术国家级重点实验室, 陕西 西安 710072
摘要:
近距离复杂操作过程中航天器相对运动姿轨之间存在耦合,准确分析耦合特性是精准控制系统设计的前提。利用基于对偶四元数得到的航天器相对运动一体化模型,采用参数分析法研究了姿轨耦合特性。首先分析了模型中的耦合项,明确了耦合产生的物理成因,确定了关键耦合参数;之后逐次改变各个参数,联合一体化动力学模型进行求解,获得耦合对航天器相对运动的定量影响。结果表明,推力偏心所产生的附加力矩和重力梯度力矩是产生相对姿轨耦合的主要成因,绝对姿态运动比相对姿态运动对相对轨道的影响更加明显,形成的姿轨耦合特性更为复杂。研究结果可为相对姿轨协同控制系统设计提供参考。
关键词:    相对运动    姿轨耦合    对偶四元数    参数分析法    耦合性分析   
Coupling Analysis on Relative Motion of Spacecraft Attitude and Orbit Model Based on Dual Quaternion
Zhu Zhanxia1,2, Ma Jiajin1,2, Fan Ruishan1,2
1. College of Astronautics, Northwestern Polytechnical University, Xi'an 710072, China;
2. National Key Laboratory of Aerospace Flight Dynamics, Xi'an 710072, China
Abstract:
Coupling effect between the spacecraft attitude and orbit influences relative motion of the spacecraft a lot, also influences control. Thus the couple characteristics should be studied before controller design. In this paper, we used relative motion model which is built based on dual quaternion, to analysis coupling effect. We proposed a new method-parameters analysis method, that is, the parameters in the coupling term were changed successively, solved the above dynamics equation, get the curves and the laws of the relative motion parameters generated by coupling terms. Based above, we designed control law to prove the coupling impact on control effect. Simulations have been done with the coupling model and the classic model of the relative motion respectively. The results show that coupling effect seriously affects the attitude and orbit of relative motion, especially the attitude influences the orbit motion a lot. In order to make the orbit and attitude control simultaneously, we must consider the coupling effect and coordinated characteristic during the controller design.
Key words:    acceleration    angular velocity    attitude control    computer simulation    control    controllers    design    dynamics    mathematical models    matrix algebra    orbits    parameterization    spacecraft    velocity    attitude and orbit coupling    coupling analysis    dual quaternion    parameter analysis    relative motion   
收稿日期: 2015-04-24     修回日期:
DOI:
基金项目: 国家自然科学基金(11472213)资助
通讯作者:     Email:
作者简介: 朱战霞(1973—),女,西北工业大学教授、博士,主要从事飞行动力学与控制研究。
相关功能
PDF(1115KB) Free
打印本文
把本文推荐给朋友
作者相关文章
朱战霞  在本刊中的所有文章
马家瑨  在本刊中的所有文章
樊瑞山  在本刊中的所有文章

参考文献:
[1] 吴宏鑫,胡海霞,谢永春,等. 自主交会对接若干问题[J]. 宇航学报, 2003, 24(2):132-138 Wu Hongxin, Hu Haixia, XieYongchun, et al. Several Questions on Autonomous Rendezvous Docking[J]. Journal of Astronautics, 2003, 24(2):132-138 (in Chinese)
[2] Shay Segal, Pini Gurfil. Effect of Kinematic Rotation-Translation Coupling on Relative Spacecraft Translational Dynamics[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(3): 1045-1050
[3] 李鹏,岳晓奎,袁建平. 基于θ-D方法的在轨操作相对姿轨耦合控制[J]. 中国空间科学技术,2012,32(4): 8-12 Li Peng, Yue Xiaokui, Yuan Jianping. Coupled Control of Relative Position and Attitude Based on θ-D Technique for On-orbit Operations[J]. Chinese Space Science and Technology, 2012,32(4):8-12 (in Chinese)
[4] 何孝港,李永斌. 在轨服务的相对运动耦合动力学建模与分析[J]. 飞行器测控学报,2011,30(5): 66-71 He Xiaogang, Li Yongbin. Relative Motion Coupled Dynamics Modeling and Analysis of On-orbit Servicing[J]. Journal of Spacecraft TT&C Technology, 2011, 30(5): 66-71 (in Chinese)
[5] Xu Yunjun. Chattering Free Sliding Mode Control for a 6 DOF Formation Flying Mission[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit, 2005: 15-18
[6] Inalhan G, Tillerson M, How J P. Relative Dynamics and Control of Spacecraft Formations in Eccentric Orbits[J]. Journal of Guidance, Control, and Dynamics, 2002, 25(1): 48-59
[7] Welsh S J, Subbarao K. Adaptive Synchronization and Control of Free Flying Robots for Capture of Dynamics Free-Floating Spacecrafts[C]//AIAA/AAS Astrodynamics Specialist Conference and Exhibit Providence, Rhode Island, 2004
[8] 铁钰嘉,岳晓奎,曹静. 基于航天器姿轨耦合模型的非线性前馈控制[J]. 中国空间科学技术, 2010, 12(1): 11-16 Tie Yujia, Yue Xiaokui, Cao Jing. Nonlinear Feed forward Control on Attitude and Orbital Coupling Model for Spacecraft[J]. Chinese Space Science and Technology, 2010, 12(1): 11-16 (in Chinese)
[9] 马家瑨,朱战霞. 基于螺旋理论的航天器姿轨耦合分析[J]. 中国空间科学技术, 2014, 34(6):24-30 Ma Jiajin, Zhu Zhanxia. Coupling Analysis of the Spacecraft Attitude and Orbit Model Based on the Spiral Theory[J]. Chinese Space Science and Technology,2014, 34(6): 24-30 (in Chinese)
[10] 王剑颖,梁海朝,孙兆伟. 基于对偶数的相对耦合动力学与控制[J]. 宇航学报, 2010, 31(7): 1711-1717 Wang Jianyin, Liang Haizhao, Sun Zhaowei. Dual Number-Based Relative Coupled Dynamics and Control[J]. Journal of Astronautics,2010,31(7):1711-1717 (in Chinese)
[11] 刘剑,朱战霞,马家瑨. 基于螺旋理论的航天器相对运动建模与控制[J]. 西北工业大学学报, 2013, 31(4):590-595 Liu Jian, Zhu Zhanxia, Ma Jiajin. Establishing Spacecraft's Relative Orbit and Attitude Coupling Dynamics Model Based on Screw Theory[J]. Journal of Northwestern Polytechnical University, 2013, 31(4): 590-595 (in Chinese)
[12] 郭善儒. 螺旋理论及其总框图[J]. 天津理工学院学报, 1990(1): 1-7 Guo Shanru. Theory of Screw and Its Block Diagram[J]. Journal of Tianjin University of Technology, 1990(1): 1-7 (in Chinese)
[13] 马家瑨. 航天器相对运动的姿轨耦合分析与控制研究[D]. 西安:西北工业大学, 2015 Ma Jiajin. Coupling Analysis of the Attitude and Orbit of Spacecraft Relative Motion and Control[D]. Xi'an: Northwestern Polytechnical University, 2015 (in Chinese)