论文:2015,Vol:33,Issue(6):879-886
引用本文:
黄汉桥, 赵鑫, 周欢, 王族统. 无人机螺旋自主认知与改出控制器设计[J]. 西北工业大学学报
Huang Hanqiao, Zhao Xin, Zhou Huan, Wang Zutong. Autonomous Cognition and Recovery Controller Design of UAV Spiral[J]. Northwestern polytechnical university

无人机螺旋自主认知与改出控制器设计
黄汉桥1,2, 赵鑫1, 周欢1, 王族统1
1. 空军工程大学 航空航天工程学院, 陕西 西安 710038;
2. 西北工业大学 陕西 西安 710072
摘要:
针对飞行器螺旋改出难题,研究无人机螺旋自主认知与改出控制方法。首先建立基于飞行状态认知的无人机安全控制框架,在此基础上进行无人机螺旋认知与改出控制器设计,分析螺旋成因,根据机载传感器提供的实时飞行参数信息,采用直觉模糊统计判决与决策算法进行螺旋自主认知,最后考虑状态变量控制时序,并设计非线性动态逆控制律,完成无人机螺旋改出的制导控制。仿真结果表明,相对于已有解决策略,所提出的控制方法可以显著缩短螺旋改出所需时间,同时具有较好的动态响应特性。
关键词:    无人机    螺旋    认知    改出    安全控制    控制器    控制时序    非线性动态逆    统计    决策    动态响应    飞行状态    攻角    角速率    自主    飞行控制   
Autonomous Cognition and Recovery Controller Design of UAV Spiral
Huang Hanqiao1,2, Zhao Xin1, Zhou Huan1, Wang Zutong1
1. Aeronautics and Astronautics Engineering College, Air Force Engineering University, Xi'an 710038, China;
2. Northwestern Polytechnic University, Xi'an 710038, China
Abstract:
Aiming at dealing with the spiral recovery puzzle of aerial vehicles, we put forward an autonomous spiral cognition and recovery control method of the unmanned aerial vehicle(UAV). First of all, the safety control framework of unmanned aerial vehicles(UAV) based on flight state-cognition is built and the autonomous spiral cognition and recovery controller is designed. Then, the spiral factors are analyzed and the spiral state is recognized by using intuitive fuzzy statistic adjudging and decision-making algorithm according to timing flight variables information afforded by airborne sensors. Finally, the control scheduling of state variables is considered, and nonlinear dynamic inversion control laws are designed, which accomplish the guidance and control of the UAV spiral. Simulation results and their analysis suggest that, compared with the existing strategies, the proposed control method can decrease the time needed for spiral recovery evidently and meanwhile has good dynamic response characteristics.
Key words:    aneroid altimeters    angle of attack    angular velocity    computer simulation    control    control surfaces    controllers    damping    data fusion    decision making    degrees of freedom(mechanics)    design    drag coefficient    dynamic response    efficiency    electronic guidance systems    errors    fixed wings    flight control systems    frequency bands    global positioning system    inertial navigation systems    measurements    probability    real time control    safety engineering    scheduling    sensors    statistics    time series    unmanned aerial vehicles(UAV)    velocity    cognition    control law    control scheduling    flight state    nonlinear dynamic inversion(NDI)    recovery    safety control    spiral statistic adjudging.   
收稿日期: 2015-02-18     修回日期:
DOI:
基金项目: 国家自然科学基金(71501184)与航空科学基金(20155196022)资助
通讯作者:     Email:
作者简介: 黄汉桥(1982—),西北工业大学校友、博士后,空军工程大学讲师,主要从事无人飞行器作战系统与技术、无人作战飞机自主攻击技术等研究。
相关功能
PDF(1582KB) Free
打印本文
把本文推荐给朋友
作者相关文章
黄汉桥  在本刊中的所有文章
赵鑫  在本刊中的所有文章
周欢  在本刊中的所有文章
王族统  在本刊中的所有文章

参考文献:
[1] Loh R, Bian Y, Roe T. UAVs in civil airspace: safety requirements[C]//IEEE Aerospace and Electronic Systems, 2009: 5-17
[2] Leveson, N. Safeware: System Safety and Computers[M]. Addison-Wesley, New Jersey, 1995
[3] Leveson N. A New Accident Model for Engineering Safer Systems[J]. Safety Science, 2004, 42(4): 237-270
[4] 马庭亮. 螺旋技术在飞行特技中的运用探讨[J]. 技术与市场, 2011, 18(7): 91-92 Ma Tingliang. The Application Discussion of Spiral Technology on Aerial Acrobatics[J]. Technology and Macket, 2011, 18(7): 91-92 (in Chinese)
[5] 陈淑琴, 赵文成, 席剑辉. 方向舵卡死无人机步出螺旋运动控制律的设计[J]. 电光与控制, 2010, 17(9): 57-59 Chen Shuqin, Zhao Wencheng, Xi Jianhui. Control Law Designed for UAV to Step out Spiral Motion When Rudder Deadlock Happens[J]. Electronics Optics & Control, 2010, 17(9): 57-59 (in Chinese)
[6] Clough B T. Unmanned Aerial Vehicles: Autonomous Control Challenges, a Researcher's Perspective[C]//2nd AIAA "Unmanned Unlimited" Systems, Technologies, and Operations, San Diego, California, 2003
[7] Huang X, Huang H, Liao B, et al. An Ontology-Based Approach to Metaphor Cognitive Computation[J]. Minds and Machines, 2013, 23(1): 105-121
[8] Mark Bishop J, Erden Y J. Computational Creativity, Intelligence and Autonomy[J]. Cognitive Computation, 2012, 4(3): 209-211
[9] Squartini S, Hu S, Liu Q. Advances on Brain Inspired Computing[J]. Cognitive Computation, 2013, 5(2): 161-163
[10] Gomzin A V, Fesenko E V, Shataev V G. Spiral Descent of an Unmanned Aerial Vehicle[J]. Russian Aeronautics, 2009, 52(3): 277-283
[11] 樊雷, 雷英杰. 直觉模糊统计判决与决策[J]. 控制与决策, 2011, 26(3): 356-362 Fan Lei, Lei Yingjie. Intuitionistic Fuzzy Statistic Adjudging and Decision-Making[J]. Control and Decision, 2011, 26(3): 356-362 (in Chinese)
[12] 陈勇, 董新民, 薛建平, 等. 多操纵面飞控系统约束自适应控制分配策略[J]. 系统工程与电子技术, 2011, 33(5): 1118-1123 Chen Yong, Dong Xinmin, Xue Jianping, et al. Constrained Adaptive Control Allocation for Multi-Effector Flight Control System[J]. System Engineering and Electronics, 2011, 33(5): 1118-1123 (in Chinese)
[13] Dyhr J P, Morgansen K A, Daniel T L, et al. Flexible Strategies for Flight Control: an Active Role for the Abdomen[J]. The Journal of Experimental Biology, 2013, 216(9): 1523-1536
[14] Sieberling S, Chu Q P, Mulder J A. Robust Flight Control Using Incremental Nonlinear Dynamic Inversion and Angular Acceleration Prediction[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(6): 1732-1742
[15] Shu Y, Tang S. Integrated Robust Dynamic Inversion Design of Missile Guidance and Control Based on Nonlinear Disturbance Observer[C]//20124th International Conference on Intelligent Human-Machine Systems and Cybernetics, 2012: 42-45
[16] 韩英华, 范彦铭. 基于非线性动态逆的无人机自动着陆控制系统[J]. 航空学报, 2008, 5(增刊): 66-71 Han Yinghua, Fan Yanming. Control System of Automatic Landing of UAV Based on Nonlinear Dynamic Inversion[J]. Acta Aeronautica Astronauotica Sinica, 2008, 5(Suppl): 66-71 (in Chinese)
[17] Reiner J, Balas G J, Garrard W L. Flight Control Design Using Robust Dynamic Inversion and Time-Scsle Separation[J]. Automatica, 1996, 32(11): 1493-1504
[18] Du D J, Fei M R, Hu H S. Two-Layer Networked Learning Control Using Self-Learning Fuzzy Control Algorithms[J]. Chinese Journal of Scientific Instrument, 2007, 28(12): 2124-2131
相关文献:
1.杨立本, 章卫国, 黄得刚, 车军.欠驱动四旋翼飞行器反演模糊自适应控制[J]. 西北工业大学学报, 2015,33(3): 495-499
2.王红波, 祝小平, 周洲, 许晓平.太阳能无人机螺旋桨滑流气动特性分析[J]. 西北工业大学学报, 2015,33(6): 913-920
3.方群, 王祥.基于在线RBF神经网络的BTT导弹控制器设计[J]. 西北工业大学学报, 2014,32(3): 446-450
4.王党辉, 何花, 辛明瑞, 安建峰.一种自主恢复的高可靠存储控制器设计[J]. 西北工业大学学报, 2013,31(3): 429-434
5.耿峰, 祝小平, 周洲, 孟俊生.一种有效的高速攻击型无人机二自由度PID控制[J]. 西北工业大学学报, 2013,31(1): 1-7
6.朱学平, 杨军.基于定量反馈理论的攻击型无人机鲁棒飞行控制系统设计[J]. 西北工业大学学报, 2012,30(1): 56-61
7.谭雁英, 孙波, 祝小平, 周洲.无人机自主飞行任务管理器规则集的Petri网建模与验证[J]. 西北工业大学学报, 2012,30(6): 862-867
8.肖伟, 周洲, 王睿, 李满.分布式推进系统对太阳能无人机横航向飞行品质的影响研究[J]. 西北工业大学学报, 2012,30(6): 868-873