论文:2014,Vol:32,Issue(4):550-556
引用本文:
张科, 崔建峰, 吕梅柏. 弹性高超声速飞行器多胞鲁棒变增益控制[J]. 西北工业大学
Zhang Ke, Cui Jianfeng, Lyu Meibo. Designing a Polytopic Robust Variable Gain Controller for Flexible Hypersonic Vehicle[J]. Northwestern polytechnical university

弹性高超声速飞行器多胞鲁棒变增益控制
张科1,2, 崔建峰1,2, 吕梅柏1,2
1. 西北工业大学 航天学院, 陕西 西安 710072;
2. 航天飞行动力学国家级重点实验室, 陕西 西安 710072
摘要:
现有的高超声速飞行器控制系统设计方法在处理大包线飞行参数变动时计算复杂度较高,且较少考虑结构弹性的影响。针对上述问题,提出了一种基于张量乘积(TP)模型转换和可测状态反馈的多胞鲁棒变增益控制方法。其首先使用TP模型转换方法获取系统的多胞模型,然后基于线性矩阵不等式求解系统的多胞鲁棒变增益控制器。在求取控制器时,为简化控制器结构及降低控制器阶数,将弹性模态视为外部干扰,仅通过实际可测的刚体状态参数作为反馈量来设计控制器。仿真结果表明,所设计的多胞鲁棒变增益控制器可实现参考指令的有效跟踪,并保证整个包线范围内弹性模态稳定。
关键词:    弹性高超声速飞行器    多胞系统    张量乘积模型转换    线性变参数   
Designing a Polytopic Robust Variable Gain Controller for Flexible Hypersonic Vehicle
Zhang Ke1,2, Cui Jianfeng1,2, Lyu Meibo1,2
1. School of Astronautics, Northwestern Polytechnical University, Xi'an 710072, China;
2. National Key Laboratory of Aerospace Flight Dynamics, Xi'an 710072, China
Abstract:
The existing method for designing of a flexible hypersonic vehicle control system have high computational complexity for handling the changes in flight parameters in wide envelopes and do not take into enough consideration its structural elastic effect. Hence we design a polytopic robust variable gain controller based on the tensor-product model transform and the feedback of measurable rigid state parameters. The controller uses the tensor-product model transform to obtain the polytopic model of the hypersonic vehicle and then uses the linear matrix inequality to solve its polytopic robust variable gain controller. To simplify the structure of the controller and reduce the number of its orders, we treat the elastic modal as external disturbance and then design the controller with the feedback of meas-urable rigid state parameters. The simulation results, given in Figs. 2,3 and 4, and their anslysis show preliminarily that the controller thus designed can effectively track the reference command and ensure that the hypersonic vehicle has stable elastic modals in wide envelopes.
Key words:    controllers    computational efficiency    computer simulation    hypersonic vehicle    linear matrix inequalities    mathematical models    robust control    singular value decomposition    stability    tracking (position)   
收稿日期: 2013-11-06     修回日期:
DOI:
基金项目: 航空科学基金(20110153003);西北工业大学基础研究基金(GCKY1006)资助
通讯作者:     Email:
作者简介: 张科(1968-),西北工业大学教授、博士生导师,主要从事导弹制导仿真与自动控制原理的研究。
相关功能
PDF(385KB) Free
打印本文
把本文推荐给朋友
作者相关文章
张科  在本刊中的所有文章
崔建峰  在本刊中的所有文章
吕梅柏  在本刊中的所有文章

参考文献:
[1] Fiorentini L, Serrani A. Nonlinear Robust Adaptive Control of Flexible Air-Breathing Hypersonic Vehicles[J]. Jouranl of Guidance, Control, and Dynamics. 2009, 32(2): 401-416
[2] 程路, 姜长生, 文杰, 等. 近空间飞行器飞 /推一体化模糊自适应广义预测控制[J]. 系统工程与电子技术, 2011 (1):127-133 Cheng Lu, Jiang Changsheng, Wen Jie, et al. Integrated Flight /propulsion Fuzzy Adaptive Generalized Predictive Control for Near-Space Vehicle[J]. Systems Engineering and Electronics, 2011 (1): 127-133 (in Chinese)
[3] 秦昌茂, 齐乃明. 高超声速飞行器再入分数阶 PI λ D μ 姿态控制[J]. 弹箭与制导学报, 2010(4): 26-28 Qian Changmao, Qi Naiming. Fractional-Order PI λ D μ Attitude Controller for Hypersonic Missile in Reentry[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2010(4): 26-28 (in Chinese)
[4] Hu X X, Wu L G, Hu C H, et al. Adaptive Sliding Mode Tracking Control for a Flexible Air-Breathing Hypersonic Vehicle [J]. Journal of the Franklin Institute Engineering and Applied Methematics, 2012, 349(2): 559-577
[5] Li H B, Sun Z Q, Min H B, et al. Fuzzy Dynamic Characteristic Modeling and Adaptive Control of Nonlinear Systems and Its Application to Hypersonic Vehicles[J]. Science China-Information Sciences, 2011, 54(3): 460-468
[6] Parker J T, Serrani A, Yurkovich S, et al. Control-Oriented Modeling of an Air-Breathing Hypersonic Vehicle[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(3): 856-869
[7] 孟中杰, 黄攀峰, 闫杰. 高超声速巡航飞行器振动建模及精细姿态控制[J]. 西北工业大学学报, 2011 (3): 481-485 Meng Zhongjie, Huang Panfeng, Yan Jie. Satisfying Stringent Requirements for Fine Attitude Control of Hypersonic Cruise Vehicle (HCV)[J]. Journal of Northwestern Polytechnical University, 2011 (3): 481-485 (in Chinese)
[8] Li H Y, Wu L G, Gao H J, et al. Reference Output Tracking Control for a Flexible Air-Breathing Hypersonic Vehicle Via Output Feedback[J]. Optimal Control Applications & Methods, 2012, 33(4): 461-487
[9] 孟中杰, 闫杰. 高超声速弹性飞行器振动模态自适应抑制技术[J]. 宇航学报, 2011 (10): 2164-2168 Meng Zhongjie, Yan Jie. Adaptive Modal Suppression for Hypersonic Aeroelastic Vehicle[J]. Journal of Astronautics, 2011 (10): 2164-2168 (in Chinese)
[10] Bolender M A, Doman D B. A Non-Linear Model for the Longitudinal Dynamics of a Hypersonic Air-Breathing Vehicle[C] ∥ Collection of Technical Papers-AIAA Guidance, Navigation, and Control Conference, San Francisco, CA, United states, 2005:3937-3958
[11] Petres Z, Polytopic Decomposition of Linear Parameter-Varying Models by Tensor-Product Model Transformation[D]. Budapest: Budapest University of Technology and Economics, 2006
[12] 贾英民. 鲁棒 H 控制[M]. 北京: 科学出版社, 2007 Jia Yingmin. Robust H Control[M]. Beijing: Science Press, 2007 (in Chinese)
[13] Peaucelle D, Arzelier D. Robust Performance Analysis with LMI-based Methods for Real Parametric Uncertainty via ParameterDependent Lyapunov Functions[J]. IEEE Trans on Automatic Control, 2001, 46(4): 624-630