论文:2014,Vol:32,Issue(3):341-345
引用本文:
王年华, 赵旭, 李晓东, 郭汉青. 上凸下凹前后对称翼型低速气动特性研究[J]. 西北工业大学
Wang Nianhua, Zhao Xu, Li Xiaodong, Guo Hanqing. Exploring Aerodynamic Characteristics of Cambered Fore-and-Aft Symmetrical Airfoil at Low Speed[J]. Northwestern polytechnical university

上凸下凹前后对称翼型低速气动特性研究
王年华, 赵旭, 李晓东, 郭汉青
西北工业大学 航空学院, 陕西 西安 710072
摘要:
旋转机翼无人机由于兼具垂直起降和高速巡航性能而备受青睐,旋转机翼翼型不同于固定翼,对旋转机翼翼型的设计和气动特性的研究具有实际意义。针对旋转机翼翼型展开有弯度的前后对称翼型设计,通过亚音速多工况数值计算筛选出升阻特性最优的翼型——弯度10%、厚度12%的上凸下凹前后对称翼型GOE-10-12。为了验证数值计算的准确性,进行了3种低速工况(20 m/s、30m/s、40 m/s)的风洞试验,结果表明数值计算和试验获得的升力系数和阻力系数吻合较好,新设计的翼型具有良好的升阻力特性,适合应用于旋转机翼。
关键词:    旋转机翼    前后对称翼型    上凸下凹    CFD    风洞试验    气动特性   
Exploring Aerodynamic Characteristics of Cambered Fore-and-Aft Symmetrical Airfoil at Low Speed
Wang Nianhua, Zhao Xu, Li Xiaodong, Guo Hanqing
College of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
An unmanned aerial vehicle (UAV) with rotational wings is popular because it can take off and land vertically and cruise at high speed. The airfoil with rotational wings is different from the airfoil with fixed wings. The difference is significant for the design of the airfoil with rotational wings and for the study of its aerodynamic charac-teristics. Therefore, we design a cambered (upper surface convex and lower surface concave/USCLSC) and fore-and-aft symmetrical airfoils for the UAV with rotational wings. The subsonic numerical calculation is performed to determine the airfoil with the optimal lift drag ratio, whose maximum camber is 10%, and maximum thickness is 12%. To verify the accuracy of the numerical calculation, we conduct wind tunnel tests under three low speed work conditions:V=20 m/s, 30 m/s and 40 m/s. The test results, given in Figs.3 through 9, and their analysis show preliminarily that the lift coefficient and drag coefficient obtained with the numerical calculation agree well with those obtained with the test results, which indicate that the airfoil we thus designed has good aerodynamic charac-teristics and is suitable for a rotational wing.
Key words:    aerodynamics    airfoils    computational fluid dynamics    design    drag coefficient    lift drag ratio    turbulence models    unmanned aerial vehicles (UAV)    wind tunnels    wings    rotational wing    fore-and-aft symmetrical airfoil    wind tunnel test    aerodynamic characteristics   
收稿日期: 2013-09-26     修回日期:
DOI:
基金项目: 2012年国家大学生创新训练计划项目(201210699018)资助
通讯作者:     Email:
作者简介: 王年华(1992-),西北工业大学本科生,主要从事空气动力学研究。
相关功能
PDF(523KB) Free
打印本文
把本文推荐给朋友
作者相关文章
王年华  在本刊中的所有文章
赵旭  在本刊中的所有文章
李晓东  在本刊中的所有文章
郭汉青  在本刊中的所有文章

参考文献:
[1] 王祥云. 无人机共轴旋转机翼的气动设计初步研究[D]. 西安: 西北工业大学, 2013 Wang Xiangyun. Preliminary Aerodynamic Design and Study of a Coaxial Rotor Wing for an UAV [D]. Xi'an: Northwestern Polytechnical University, 2013 (in Chinese)
[2] Rutherford J W, Bass S M, Larsen S D. Canard Rotor /Wing: A Revolutionary High-Speed Rotorcraft Concept [C]//1993 AIAA /AHS /ASEE Aerospace Design Conference, Irvine, CA, 1993
[3] Bass S M, Thompson T L, Rutherford J W. Fixed-Wing Performance Predictions of the Canard Rotor /Wing Concept Based on Wind Tunnel Test Results [C]//13th AIAA Applied Aerodynamics Conference, Washington, D. C., 1995
[4] 邓阳平, 詹浩, 高正红. 翼尖喷气驱动旋转机翼悬停状态地面试验研究 [C]//飞行力学与飞行试验(2006) 学术交流年 会论文集, 四川, 成都, 2006 Deng Yangping, Zhan Hao, Gao Zhenghong. Experimental Study on Wing Tip Jet Driven Rotary Wings at Ground Hovering State [C]//Flight Mechanics and Flight Test Academic Communication Annual Symposium, Chengdu, 2006 (in Chinese)
[5] Mitchell C B. Vogel The Canard Rotor Wing (CRW) Aircraft A New Way to Fly[R]. AIAA-2003-2517
[6] 詹浩, 邓阳平, 高正红. 椭圆翼型低速气动特性研究[J]. 航空计算技术, 2008, 38(3): 25-27 Zhan Hao, Deng Yangping, Gao Zhenghong. Investigation on Aerodynamics Performance of Elliptic Airfoil at Low Speed[J]. Aeronautical Computing Technique, 2008, 38(3): 25-27 (in Chinese)
[7] 张师帅. 计算流体动力学及其应用: CFD 软件的原理与应用[M]. 武汉: 华中科技大学出版社 2011: 82-86 Zhang Shishuai. Computational Fluid Dynamics and Its Application: Theory and Application of CFD Software[M]. Wuhan: Huazhong University of Science & Technology Press, 2011: 82-86 (in Chinese)
[8] 恽起麟, 风洞实验数据误差分析[J]. 气动实验与测量控制, 1994, 8(2): 62-70 Yun Qilin. The Error Analysis for Wind Tunnel Testing Data[J]. Aerodynamic Experiment and Measurement & Control, 1994,8(2): 62-70 (in Chinese)