论文:2014,Vol:32,Issue(2):176-180
引用本文:
李结, 李华星, 王健磊, 孟宣市. 纳秒脉冲等离子体对静止大气的激励特性[J]. 西北工业大学
Li Jie, Li Huaxing, Wang Jianlei, Meng Xuanshi. Characteristics Comparison between AC- and NS-DBD Plasma Actuatoions in Quiescent Air[J]. Northwestern polytechnical university

纳秒脉冲等离子体对静止大气的激励特性
李结, 李华星, 王健磊, 孟宣市
西北工业大学 翼型叶栅国家级重点实验室, 陕西 西安 710072
摘要:
应用介质阻挡放电(dielectric barrier discharge,DBD)等离子体激励对静止大气进行诱导,分别使用交流(alternative current,AC)等离子体电源和纳秒脉冲(nanosecond pulse,NS)等离子体电源进行激励。激励器放置在600 mm×500 mm×500 mm的光学玻璃箱内。利用粒子图像测速技术(PIV,particle lmage vbelocimetry)对激励器周围的诱导速度场进行了测量,给出了时间平均速度分布结果。实验结果表明:纳秒脉冲介质阻挡放电等离子体(NS-DBD)对静止大气的时均诱导效应和连续交流介质阻挡放电等离子体(AC-DBD)类似,都是以壁面诱导气流的形式出现,激励电压越大,壁面射流诱导速度场范围及最大诱导速度越大;AC-DBD等离子体激励产生的诱导速度场由裸露电极指向覆盖电极,最大诱导速度约为4 m/s;而NS-DBD等离子体激励在激励器顺电势和逆电势方向均有诱导速度,且主要诱导速度场出现在激励器逆电势方向;NS-DBD的最大诱导速度约为0.3 m/s;从对静止大气的诱导速度场大小来看,纳秒的动量输入几乎可以忽略不计。
关键词:    激励器    流动控制    等离子体    介质阻挡放电    纳秒脉冲    粒子图像测速   
Characteristics Comparison between AC- and NS-DBD Plasma Actuatoions in Quiescent Air
Li Jie, Li Huaxing, Wang Jianlei, Meng Xuanshi
National Key Labratory of Aerodynamics Design and Research, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
The character of the plasma actuator that induces the quiescent air is studied. The plasma actuator is powered by two different kinds of power sources. One is Alternative Current (AC) plasma power source and the oth-er is Nanosecond Pulse (NS) plasma power source. The experiments are conducted in an optical glass box whose dimension is 600 mm�00 mm�00 mm. A Particle Image Velocimetry (PIV) system used in this study to measure the flow field is induced by the plasma actuator;the average velocity distribution is shown as the results. The aver-age results of effects on quiescent air of two different kinds of power sources are similar. Both of them are present in the form of flow jet along the wall. The highest velocity and jet flow field area are increased by the power source voltage. The induced jet flow which is powered by AC power source is pointed from the exposed electrode to the en-capsulated electrode, however, the induced jet flow which is powered by NS power source is pointed to both sides and the main jet flow field is from the encapsulated electrode to the exposed electrode. The highest jet flow velocity is 4m/s for the AC power source and 0.3m/s for the NS power source. The jet velocity induced by the NS power source is almost ignorable from the point of view of inducing velocity of the quiescent air.
Key words:    actuators    experiments    flow control    flow fields    pixels    plasmas    velocity distribution    velocity measurement    dielectric barrier discharge    nano-second pulse    PIV(particle image velocimetry)   
收稿日期: 2013-10-06     修回日期:
DOI:
基金项目: 国家自然基金(11172243、51107101);高等学校博士学科点专项科研基金(20106102110002);西北工业大学翱翔之星资助
通讯作者:     Email:
作者简介: 李结(1985-),西北工业大学硕士研究生,主要从事等离子体控制的研究。
相关功能
PDF(579KB) Free
打印本文
把本文推荐给朋友
作者相关文章
李结  在本刊中的所有文章
李华星  在本刊中的所有文章
王健磊  在本刊中的所有文章
孟宣市  在本刊中的所有文章

参考文献:
[1] Thomas C Corke, Martiqua L Post, Dmitriy M Orlov. Single-Dielectric Barrier Discharge Plasma Enhanced Aerodynamics: Concepts, Optimization, and Applications[J]. Journal of Propulsion and Power, 2008, 24(5): 935-945
[2] Eric Moreau. Airflow Control by Non-Thermal Plasma Actuators[J]. J Phys D: Appl Phys, 2007, 40: 605-636
[3] Post M L, Corke T C. Separation Control on High Angle of Attack Airfoil Using Plasma Actuators[C]. AIAA-2003-1024
[4] Post M L, Corke T C. Separation Control Using Plasma Actuators: Dynamic Stall Vortex Control on Oscillating Airfoil[J]. AIAA Journal, 2006, 44(12): 3125-3135
[5] Jukes T N, Choi K, Johnson G A, Scott S J. Turbulent Drag Reduction by Surface Plasma through Spanwise Flow Oscillation [C]. AIAA-2006-3693
[6] Thomas F O, Kozlov A, Corke T C. Plasma Actuators for Cylinder Flow Control and Noise Reduction[J]. AIAA Journal, 2008,45(8): 1921-1931
[7] Jacob J D, Rivir R, Carter C, Estevadeordal J. Boundary Layer Flow Control Using AC Discharge Plasma Actuators[C]. 2nd AIAA Flow Control Conference, 2004
[8] Liu F, Luo S J, Gao C, Meng X S, Hao J N, Wang J L, Zhao Z J. Flow Control over a Conical Forebody Using Duty-Cycled Plasma Actuators[J]. AIAA J, 2008, 46(11): 2969-2973
[9] Zhang P F, Wang J J, Feng L H, Wang G B. Experimental Study of Plasma Flow Control on Highly Swept Delta Wing[J]. AIAA J, 2010, 48(1): 249-252
[10] Reece J Roth, Xin Da. Optimization of the Aerodynamic Plasma Actuator as an Electrohydrodynamic (EHD) Electrical Device [C]. AIAA-2006-1203
[11] Roupassov D V, Nikipelov A A, Nudnova, Starikovskii A Yu. Flow Separation Control by Plasma Actuator with Nanosecond Pulsed Periodic Discharge[J]. AIAA J, 2009, 47(1): 168-185
[12] 李应红, 吴云, 梁华, 宋慧敏, 贾敏. 提高抑制流动分离能力 的等离子体冲击流动控制原理[J]. 科学通报, 2010, 55 (31): 3060-3068 Li YingHong, Wu Yun, Liang Hua, Song HuiMin, Jia Min. The Mechanism of Plasma Shock Flow Control for Enhancing Flowseparation Control Capability[J]. Chinese Science Bulletin, 2010, 55(31): 3060-3068 (in Chinese)
[13] Post M, Corke T C. Separation Control Using Plasma Actuators: Dynamic Stall Vortex Control on Oscillating Airfoil[J]. AIAA Journal, 2006, 44(12): 3125-3135
[14] Takashima Keisuke, Zuzeek Yvette, Walter R Lempert, Igor V. Adamovich. Characterization of Surface Dielectric Barrier Discharge Plasma Sustained by Repetitive Nanosecond Pulses[C]. AIAA-2010-4764
[15] Little J, Takashima K, Nishihara M, et al. Separation Control with Nanosecond Pulse Driven Dielectric Barrier Discharge Plasma Actuators[J]. AIAA Journal, 2012, 50(2): 350-365
[16] Patel M P, Ng T T, Vasudevan S, Thomas C Corke, et al. Scaling Effects of an Aerodynamic Plasma Actuator[C]. AIAA-2007-0635
[17] 李应红, 梁华, 马清源, 吴云, 宋慧敏, 武卫. 脉冲等离子体气动激励抑制翼型吸力面流动分离的实验[J]. 航空学报,2008, 29(6): 1429-1435 Li Yinghong, Liang Hua, Ma Qingyuan, Wu Yun, Song Huimin, Wu Wei. Experimental Investigation on Airfoil Suction Side Flow Separation by Pulse Plasma Aerodynamic Actuation[J]. Acta Aeronauticaet Astronautica Sinica, 2008, 29(6): 1429-1435 (in Chinese)