论文:2014,Vol:32,Issue(2):169-175
引用本文:
刘毅, 王刚, 叶正寅. 典型外形高超声速气动力/气动热数值计算研究[J]. 西北工业大学
Liu Yi, Wang Gang, Ye Zhengyin. Numerical Investigation of Aerodynamic and Aero-Thermal Effects for Hypersonic Vehicles[J]. Northwestern polytechnical university

典型外形高超声速气动力/气动热数值计算研究
刘毅, 王刚, 叶正寅
西北工业大学 翼型、 叶栅空气动力学国防科技重点实验室, 陕西 西安 710072
摘要:
通过数值模拟和理论分析的综合研究,比较了网格密度不同对计算的影响,研究了中心格式和3种迎风格式(AUSM+格式、AUSM+up格式、Roe格式)的计算性能,探讨了壁面温度变化对气动力/气动热计算的影响。结果表明:网格密度变化对气动力计算影响不大,但却在很大程度上影响热流的计算及流动分离的模拟;各空间格式都能准确地计算出流场压力分布,有较高的激波分辨率,但鲁棒性有所差异,其中AUSM+up格式在高超声速流场计算中鲁棒性较好;壁面温度升高会导致所得分离区增大,气动力/气动热分布也会相应发生变化;在分离区后的流动再附会很大程度上增大该区域的热流值。
关键词:    高超声速    数值模拟    气动力/气动热    网格    空间离散格式    壁面温度   
Numerical Investigation of Aerodynamic and Aero-Thermal Effects for Hypersonic Vehicles
Liu Yi, Wang Gang, Ye Zhengyin
National Key Laboratory of Aerodynamic Design and Research, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
Hypersonic flow field has been numerically investigated for two different configurations, to study the aer-odynamic/aero-thermal effects. Simulations were performed using an in-house hybrid unstructured Reynolds-aver-aged Navier-Stokes solver (HUNS3D). Four different flux differencing schemes (central scheme and three upwind schemes AUSM+, AUSM+up, Roe) were employed for spatial discretization. The accuracy of all the schemes was compared with each other and with the available experimental data. Different levels of meshes were generated to in-vestigate the effect of grid resolution. The pressure distribution was not much influenced by the mesh resolution;however the predicted heat flux was greatly affected by the change in the mesh resolution. The shock position has been accurately captured by the Central, AUSM+and AUSM+up schemes. The predicted pressure distribution was in good agreement with the experimental data but some difference was observed in the robustness of flux differencing schemes. The increase in the wall temperature gives rise to flow separation which eventually affects the aerodynamic/ aero-thermal heating. After the separation zone the flow reattachment enhances the surface heat transfer dramatic-ally.
Key words:    Computational fluid dynamics    Naver-Stokes equations    aerodynamic heating    heat transfer    computational efficiency    heat flux    flow separation    spatial discretization schemes    pressure distibutrion    thermal effects    mesh generation    shock waves    wall temperature    flow fields    hypersocie vehicles   
收稿日期: 2013-04-18     修回日期:
DOI:
基金项目: 国家自然科学基金(91216202);中国航天科技集团公司航天科技创新基金资助
通讯作者: 王刚(1977-),西北工业大学副教授、博士,E-mail:wanggang@nwpu.edu.cn     Email:wanggang@nwpu.edu.cn
作者简介: 刘毅(1977-),西北工业大学硕士研究生,主要从事计算流体力学研究。
相关功能
PDF(616KB) Free
打印本文
把本文推荐给朋友
作者相关文章
刘毅  在本刊中的所有文章
王刚  在本刊中的所有文章
叶正寅  在本刊中的所有文章

参考文献:
[1] 贺旭照. 高超声速飞行器气动力气动热数值模拟和超声速流动的区域推进求解[D]. 中国空气动力研究与发展中心研 究生部, 2007: 12-18 He Xuzhao. Numerically Simulate Aero-Force & Heat of Hypersonic Vehicles and Region Marching Method for Supersonic Flow Simulation[D]. The Graduate Faculty of China Aerodynamics Research and Development Center, 2007: 12-18 (in Chinese)
[2] Joon Ho Lee, Oh Hyun Rho. Numerical Analysis of Hypersonic Viscous Flow around A Blunt Body Using Roe's FDS and AUSM + Schemes[R] ∥AIAA -1997-2054
[3] Hoffmann K A, Siddiqui M S, Chiang S T. Difficulties Associated with the Heat Flux Computations of High Speed Flows by the Navier-Stokes Equations[R] ∥AIAA-1991-467
[4] Wang Gang, Ye Zhengyin. Mixed Element Type Unstructured Grid Generation and Its Application to Viscous Flow Simulation [C] ∥24th International Congress of Aeronautical Sciences, Yokohama, Japan, 2004
[5] Liou M S. Probing Numerical Fluxes: Mass flux, Positivity, and Entropy Satisfying Property[R] ∥AIAA-1997-2035
[6] Liou M S. A Further Development of the AUSM+ Scheme towards Robust and Accurate Solutions for All Speeds[R] ∥ AIAA-2003-4116
[7] Roe P L. Approximate Riemann Solver, Parameter Vectors, and Difference Schemes[J]. Journal of Computational Physics,1981, 43: 357-372
[8] Jameson N. Schmidt W, Turkel E. Numerical Solution of the Euler Equations by Finite Volume Methods Using Runge-Kutta Time Stepping Schemes[R] ∥AIAA-1981-1259
[9] Spalart P R, Almanacs S R. A One-Equation Turbulence Model for Aerodynamic Flows[C] ∥35th AIAA Aerospace Science Meething & Exhibit, Seatlle, Americ, 1992
[10] Jameson A, Yoon S. Lower-Upper Implicit Scheme with Multiple Grids for the Euler Equations[J]. AIAA Journal, 1987, 25 (7): 929-935
[11] Dieudonne W, Boerrigter H L, Charbonnier J M. Hypersonic Flow on a Blunted Cone-Flare and in the VKI-H3 Mach 6 Wind Tunnel[R] ∥Technical Note TN-193, Von Karman Institute, 1999
[12] Savino R, Paterna D. Blunted Cone-Flare in Hypersonic Flow[J]. Computers & Fluids, 2005, 34(7): 859-875
[13] Billig F S. Shock-Wave Shapes around Sphericaland Cylindrical-Nosed Bodies[J]. Journal of Spacecraft Rockets, 1967, 4(6):822-823
[14] Holden M, Bergman R, Harvey J, Boyd I, George J. Experimental Studies of Real Gas Effects Over a Blunted Cone/Flare Configuration in Hypervelocity[C] ∥35th AIAA Aerospace Science Meeting & Exhibit, Reno, NV, 1997
[15] 阎超, 禹建军, 李君哲. 热流 CFD 计算中格式和网格效应若干问题研究[J]. 空气动力学学报, 2006: 24(1), 125-130 Yan Chao, Yu Jianjun, Li Junzhe. Scheme Effect and Grid Dependency in CFD Computations of Heat Transfer[J]. Acta Aerodynamica Sinica, 2006: 24(1), 125-130 (in Chinese)
相关文献:
1.宋保维, 朱信尧, 单志雄, 王鹏.UUV海底定点停驻受力特性及稳定性分析[J]. 西北工业大学, 2012,30(1): 94-101