基于贝叶斯网络的涡轴航空发动机性能优化策略
王宁1, 王宇航2, 蔡志强2, 张帅2     
1. 长安大学 运输工程学院, 陕西 西安 710064;
2. 西北工业大学 机电学院, 陕西 西安 710072
摘要: 涡轴航空发动机作为驱动旋翼产生升力和推进力的动力装置,主要应用在直升机上,近年来获得了迅速发展。涡轴发动机的生产过程复杂,有着严格的出厂检测机制,只有各项性能指标达到合格要求才能满足出厂条件,这使得涡轴发动机的出厂合格率往往不太理想。关键截面温度是表征涡轴发动机性能的一个重要指标,为保证整机的可靠性,其有着最高温度值的限制。结合制造商建议,提取出了影响发动机关键截面温度的4个属性变量,形成了研究数据集。对数据集进行预处理后,基于贝叶斯网络建立了涡轴发动机性能模型。根据贝叶斯网络的特性,通过性能模型概率推理进行后验合格概率的计算,并引入目前主流的机器学习算法对性能模型的有效性进行了对比验证。提出了推荐状态组合表,为涡轴航空发动机的性能优化提出有效建议。
关键词: 贝叶斯网络    优化策略    涡轴发动机    性能优化    

涡轴航空发动机一般应用在直升机上,通过与旋翼配合构成动力装置,相比于此前的活塞式发动机,有着体积小、重量轻、功率大等多种优势,近年来得到了快速发展与广泛关注[1]。涡轴发动机的生产过程复杂,需要遵循非常细致的制造手册,同时,在出厂检测中对其各项性能指标都设定了严格的要求。关键截面温度是涡轴发动机的一个常见性能指标。当关键截面温度过高时有可能会对发动机中的关键部件造成损坏,从而引发重大安全事故,因此为了确保发动机的工作寿命以及飞机的安全性,关键截面温度这一指标有最高温度限制。然而,在当前的技术条件下,制造出来的发动机很难做到一次试车即能满足该指标的出厂合格要求,通常需要重新装配之后尝试2次乃至3次试车,这大大增加了涡轴发动机的制造成本。

近年来,随着人工智能技术的发展,许多研究人员将人工智能算法引入到了航空发动机的优化设计中。孙浩等[2]基于人工神经网络和GMM聚类建立了航空发动机的经验模型,为发动机的健康参数监测做出了贡献。李乐等[3]采用数据后处理修正的方法,对航空发动机现有的燃气取样及分析系统进行了优化设计,有效提高了分析精度与稳定性。Ahmadian等[4]研究了喷气发动机的多模型自适应控制方法,在Jet Cat SPT5型涡轴发动机上的仿真结果证明了该方法的有效性。从趋势分析的角度,John等[5]提出了一种用于涡轴发动机试验台标定的新方法,该方法被证实可以极大节省人力和物力成本。董桢等[6]提出了一种基于粒子群优化算法的发动机部件特性自动修正及更新方法,有效提高了涡轴发动机部件级模型的精度, 并直接输出更新后的部件特性。陈必东等[7]提出一种涡轴发动机综合系统中抗干扰控制性能的优化解决办法。针对发动机单个部件性能对整机性能的影响权值难以定量的问题, 林学森等[8]提出采用随机赋权值的极限学习机算法诊断发动机部件性能退化。

得益于计算机技术的迅速发展,贝叶斯统计后验分布求解的难题得到了较好的解决,再加上贝叶斯统计在经济学、社会学和医学等领域的成功应用,使得贝叶斯网络的理论和应用飞速发展[9]。在故障诊断领域,也有大量的研究人员将贝叶斯网络用在了装备故障预测以及诊断优化上,均取得了不错的进展。

本文将贝叶斯网络引入涡轴发动机的性能优化中,以关键截面温度为目标变量建立了涡轴发动机性能模型,通过贝叶斯网络搜索的方式,得到了用于指导生产的推荐状态组合表,可以有效提高发动机的出厂合格率。

1 贝叶斯网络理论 1.1 贝叶斯网络

贝叶斯网络是对复杂不确定系统进行概率推理以及数据挖掘的一种可靠工具,如今已经成为机器学习领域的一个热点研究方向[10]。贝叶斯网络将图论、概率论和统计学理论融合到了一个模型中,是一种高效地呈现事件之间相互关系的建模语言,他能将知识以图形的形式直观表示,使知识系统可视化。贝叶斯网络是一种概率图模型,变量间的依赖关系以一种网络结构的形式来呈现[11-13]。他提供了一种自然地表示因果信息的方法,可以用来发现数据间的潜在关系[14]

贝叶斯网络的拓扑结构为有向无环图, 其中节点代表随机变量, 而有向边则代表变量之间的相互作用关系。每个节点都有着相应的条件概率, 根节点X伴随的是其边缘分布P(X), 而非根节点X伴随的是条件概率分布P(X|ap(X)), ap(X)表示节点X的父节点[15]

1.2 联合概率分解

针对一个含有n个随机变量X1, X2, …, Xn的贝叶斯网络, 将各节点所对应的概率分布相乘即可得到这n个随机变量的联合概率分布

(1)

式中, ap(Xi)为节点Xi的父节点, 当ap(Xi)=Ø时, P(Xi|ap(Xi))即为边缘分布P(Xi)。

图 1中给出了一个常见的贝叶斯网络, 根据(1)式可以得到一个联合概率分布的分解

图 1 贝叶斯网络模型
(2)
1.3 朴素贝叶斯模型

朴素贝叶斯(NB)模型[16]又被称作朴素贝叶斯分类器, 是一种含有一个目标变量和多个属性变量的树型贝叶斯网络。图 2是一个朴素贝叶斯模型的示例, 其中C代表目标变量, A1, A2, …, An代表属性变量。当已知各属性变量的取值时, 通过计算后验分布P(C|A1=a1, …, An=an)来进行分类, 找出后验概率最大的那个C值划分为对象的预测类别。

图 2 朴素贝叶斯模型

朴素贝叶斯模型存在一个局部独立性假设, 这表明在已知类别变量C时, 各属性变量Ai之间相互条件独立, 因此这个模型的联合概率分布是

(3)
2 基于贝叶斯网络的发动机性能模型 2.1 优化目标与数据提取

在实际生产过程中发现改变零件1、零件2以及零件3的大小(X, Y, Z)会对某型号产品的关键截面温度(T)造成显著影响。除此之外, T还受到外界气温(Tout)的影响。此外, 在充分考虑安全性的情况下, 涡轴发动机在运行时T最高不得超过895℃。因此本文的优化目标是找到一些表现良好的X-Y-Z-Tout的组合方式, 从而尽可能提高涡轴发动机出厂时T符合要求的概率。

结合制造商的建议, 本文提取出了含有5个变量: T, X, Y, ZTout的228条某型号涡轴发动机数据。其中, T是要优化的目标变量, 其余的4个变量为属性变量。涡轴发动机数据集的各变量描述及取值范围如表 1所示。

表 1 涡轴发动机数据集变量情况统计
类别 变量名称 变量描述 取值范围
目标变量 关键截面温度/℃ T 866~920
属性变量 零件面积1/cm2
零件面积2/cm2
零件面积3/cm2
外界气温/℃
X
Y
Z
Tout
430.90~439.04
106.94~113.54
268.57~273.20
0.3~36.0
2.2 离散化处理与数据集划分

进行贝叶斯网络建模的关键步骤是变量的离散化。针对目标变量T, 以最高合格值895℃为界将其分为2段。对于属性变量Tout, 以10℃和25℃为界将其分为3段。对于属性变量X, Y, Z, 考虑到生产加工的方便, 采用等频率离散法将他们各自分为3段。离散化后的数据集见表 2

表 2 数据集离散化结果
变量状态 编码 变量状态 编码
T>895℃ 0 Y>109.57 cm2 2
T≤895℃ 1 Z≤271.82 cm2 0
T≤432.29℃ 1 Z≤271.82~271.94 cm2 1
X≤432.29 cm2 0 Z≤>271.94 cm2 2
X≤432.29~433.31 cm2 1 Tout≤10℃ 0
X>433.31 cm2 2 Tout≤10~25℃ 1
Y≤109.28 cm2 0 Tout>25℃ 2
Y≤109.28~109.57 cm2 1

考虑到模型的有效性验证, 进一步将数据集采用分层抽样的方法随机分割, 其中的80%作为训练集, 剩余的20%作为测试集用来检验模型的预测效果, 训练集和测试集中目标变量T的类别比例保持一致。涡轴发动机数据集的划分方式如表 3所示。

表 3 数据集划分结果
名称
数据集大小 228
训练集大小 182
测试集大小 46
T=1数据所占比例 0.68
2.3 发动机性能模型的建立

在数据准备工作完成之后, 接下来基于朴素贝叶斯模型建立以T为目标变量的涡轴发动机性能模型。

首先, 基于朴素贝叶斯模型建立了涡轴发动机性能模型网络结构, 如图 3所示, 这种有向无环图是贝叶斯网络模型的定性部分。其中, 目标变量T作为父节点, 其余的4个属性变量X, Y, ZTout则作为子节点。

图 3 涡轴发动机性能模型

然后, 需要计算目标变量的概率分布表以及各属性变量的条件概率表。通过对训练集中各个特定类型的样本频率进行统计, 得到了表 48

表 4 目标变量T的概率分布表
状态 概率/%
0 32.42
1 67.58
表 5 属性变量X的条件概率表 %
T X
0 1 2
0 37.29 33.90 28.81
1 32.52 34.96 32.52
表 6 属性变量Y的条件概率表 %
T Y
0 1 2
0 38.98 35.59 25.43
1 32.52 36.59 30.89
表 7 属性变量Z的条件概率表 %
T Z
0 1 2
0 42.37 38.98 18.65
1 33.33% 33.33% 33.33%
表 8 属性变量Tout的条件概率表 %
T Tout
0 1 2
0 11.86 47.46 40.68
1 28.45 50.41 21.14

表 48中的概率关系属于贝叶斯网络模型的定量部分, 将各个变量之间的依赖关系通过概率的形式来量化表示。

3 涡轴航空发动机性能优化策略

在完成性能模型的构建之后, 下一步应该考虑的是如何基于模型来优化涡轴发动机的性能。本节将根据贝叶斯网络的概率推理特性对性能模型进行搜索, 找到一些高质量的属性变量的状态组合, 从而提高涡轴发动机的合格率。

3.1 后验合格概率的计算

首先, 需要列出所有可能的属性变量状态组合。在本研究中, 有4个属性变量X, Y, ZTout, 每个属性变量又分为3种状态(0, 1, 2), 因此可能的状态组合总共有34=81种。然后, 将这些状态组合依次输入到性能模型中, 通过概率推理进行后验合格概率的计算。

为了对具体的计算过程进行说明, 接下来以X, Y, ZTout的状态组合为(0, 0, 0, 0)时为例, 计算该状态组合下目标变量T的后验合格(T=1)概率。计算过程如下:

首先根据贝叶斯公式, 当T=1时有

(4)

根据图 3, 可对(4)式进一步化简

(5)

在(5)式中, 分子中的P(T=1)可通过查询表 4得到, P(X=0|T=1)等4个属性变量的条件概率值可分别通过查询表 58得到。将分母保持固定, 令D=P(X=0, Y=0, Z=0, Tout=0)以便于描述。将查得的各个数值代入(5)式, 可以得到

(6)

同理, 当T=0时有

(7)

根据概率论知识, 由(6)式和(7)式可得

(8)

解(8)式可得D=0.009 145, 代入(6)式可得

(9)

至此, 便可得到: 当X, Y, ZTout的状态组合为(0, 0, 0, 0)时, 目标变量T的后验合格概率为74.11%。将本研究全部81种可能的属性变量组合输入到性能模型中, 按上述计算过程进行概率推理, 就可以得到所有属性变量状态组合下目标变量T的后验合格概率结果。

3.2 对比验证

在通过概率推理完成后验合格概率的计算之后, 有必要对所建立的性能模型进行有效性验证。将之前划分好的测试集输入到建立好的性能模型中, 通过比较目标变量的预测值与实际值, 得到了性能模型的混淆矩阵, 见表 9

表 9 混淆矩阵
实际结果 预测结果
0(13) 1(33)
0(15)
1(31)
9
4
6
27

通过混淆矩阵, 还可进一步计算得到更多性能评价指标, 如准确率、精确率、召回率(recall)和F1值等。

进一步地, 为了验证本文所建立的朴素贝叶斯性能模型(NB)的有效性, 在此引入机器学习算法中常见的决策树(DT), 逻辑回归(LR)和随机森林(RF)进行模型的对比。各个模型在同一测试集上的性能表现如表 10所示。

表 10 模型性能计算结果
模型 准确率 精确率 召回率 F1
NB 0.782 6 0.818 2 0.871 0 0.843 8
DT 0.630 4 0.750 0 0.677 4 0.711 9
LR 0.760 9 0.812 5 0.838 7 0.825 4
RF 0.652 2 0.758 6 0.709 7 0.733 3

为方便比较, 对表 10的计算结果进行了可视化展示, 如图 4所示。

图 4 模型性能对比

从以上结果可以看出, 本文基于朴素贝叶斯模型建立的涡轴航空发动机性能模型具有较高的精度, 能较好地体现数据的特点。在与其他模型的对比中, 综合各个性能指标来看有比较大的优势, 基于此模型所进行的概率推理相较来说也最为可信。

3.3 推荐状态组合表

通过排列属性变量的状态组合并将其依次输入到性能模型中, 得到目标变量T的后验合格概率之后, 可以按概率值大小对这些状态组合做一个降序排列, 形成一个推荐状态组合表。在推荐状态组合表中所处的位置越高, 表示采用该状态组合后, 目标变量T满足合格条件的概率就越大。受篇幅限制, 本文只节选了推荐状态组合表中的前20个状态组合, 如表 11所示。

表 11 推荐状态组合表(节选)
X Y Z Tout P(T=1|X, Y, Z, Tout)
2 2 2 0 92.45
1 2 2 0 91.80
2 1 2 0 91.21
0 2 2 0 90.45
1 1 2 0 90.45
2 0 2 0 89.38
0 1 2 0 88.91
1 0 2 0 88.49
0 0 2 0 86.67
2 2 1 0 85.43
2 2 2 1 84.44
2 2 0 0 84.36
1 2 1 0 84.27
2 1 1 0 83.22
1 2 2 1 83.21
1 2 0 0 83.13
2 1 2 1 82.12
2 1 0 0 82.02
0 2 1 0 81.92
1 1 1 0 81.92

根据表 11可以发现, 能使目标变量T的后验合格概率最大的属性变量X, Y, ZTout的状态组合为(2, 2, 2, 0), 在采用了该状态组合后, 理论上目标变量T有92.45%的概率能满足合格要求。此外, 还可进一步设定搜索目标, 假如需要找出全部满足目标变量T的后验合格概率≥85%的状态组合, 根据表 11, 可轻松得到: 在此搜索目标下, 属性变量X, Y, ZTout的状态组合解集为{(2, 2, 2, 0), (1, 2, 2, 0), (2, 1, 2, 0), (0, 2, 2, 0), (1, 1, 2, 0), (2, 0, 2, 0), (0, 1, 2, 0), (1, 0, 2, 0), (0, 0, 2, 0), (2, 2, 1, 0)}。

基于贝叶斯网络的概率推理特性对性能模型进行搜索,成功建立了涡轴发动机的推荐状态组合表。在以后的实际生产与装配活动中,可以适当综合考虑经济成本和人力成本,尽可能选择在推荐状态组合表中排名靠前的参数状态组合,从而可以有效提高涡轴发动机的出厂合格率。不同于常规的贝叶斯网络应用模式,在经过模型搜索之后,成功实现了由模型出发反过来指导生产的目标。

4 结论

本文主要研究涡轴航空发动机的性能优化问题,首先对涡轴发动机的数据进行了提取与预处理,然后,利用朴素贝叶斯模型,建立了以关键截面温度为目标变量的涡轴发动机性能模型。接着,基于贝叶斯网络的概率推理特性对性能模型进行了后验合格概率的计算,并引入决策树,逻辑回归和随机森林等主流算法进行对比分析,结果表明本文所提出模型能够有效识别发动机的性能合格概率。最后,提出了推荐状态组合表,对涡轴航空发动机的日常生产活动提出了切实有效的建议。

参考文献
[1] 邹望之, 郑新前. 航空涡轴发动机发展趋势[J]. 航空动力学报, 2019, 34(12): 2577-2588.
ZOU Wangzhi, ZHENG Xinqian. Development trends of aero turboshaft engines[J]. Journal of Aerospace Power, 2019, 34(12): 2577-2588. (in Chinese)
[2] 孙浩, 郭迎清, 赵万里. 基于GMM聚类方法构建经验模型的机载实时模型改进方法[J]. 西北工业大学学报, 2020, 38(3): 507-514.
SUN Hao, GUO Yingqing, ZHAO Wanli. Improved model for on-board real-time by constructing empirical model via GMM clustering method[J]. Journal of Northwestern Polytechnical University, 2020, 38(3): 507-514. (in Chinese) DOI:10.3969/j.issn.1000-2758.2020.03.008
[3] 李乐, 索建秦, 于涵, 等. 燃气分析系统优化设计及应用研究[J]. 西北工业大学学报, 2020, 38(1): 104-113.
LI Le, SUO Jianqin, YU Han, et al. Optimal design and application of gas analysis system[J]. Journal of Northwestern Polytechnical University, 2020, 38(1): 104-113. (in Chinese) DOI:10.3969/j.issn.1000-2758.2020.01.013
[4] AHMADIAN N, KHOSRAVI A, SARHADI P. Adaptive control of a jet turboshaft engine driving a variable pitch propeller using multiple models[J]. Mechanical Systems & Signal Processing, 2017, 92(1): 1-12.
[5] JOHN S K, MISHRA R K, SHETTY P B. Test bed calibration by trend analysis for reliability of a turboshaft engine performance[J]. Journal of Failure Analysis & Prevention, 2017, 17(6): 1208-1216. DOI:10.1007/s11668-017-0359-3
[6] 董桢, 周文祥, 潘慕绚, 等. 涡轴发动机部件特性修正及更新方法[J]. 航空发动机, 2018, 44(6): 11-16.
DONG Zhen, ZHOU Wenxiang, PAN Muxuan, et al. Modification and updating method in component characteristics of turboshaft engine[J]. Aeroengine, 2018, 44(6): 11-16. (in Chinese)
[7] 陈必东, 徐建国, 王运来, 等. 涡轴发动机抗干扰控制性能优化的探索与研究[J]. 智慧工厂, 2016, 1(7): 54-57.
CHEN Bidong, XU Jianguo, WANG Yunlai, et al. Turboshaft engine anti-interference performance optimization control of exploration and research[J]. Smart Factory, 2016, 1(7): 54-57. (in Chinese)
[8] 林学森, 李本威, 赵勇, 等. 涡轴发动机性能退化分析与诊断[J]. 燃气涡轮试验与研究, 2015, 28(6): 34-38.
LIN Xuesen, LI Benwei, ZHAO Yong, et al. Analysis and diagnosis of a turbo-shaft engine performance deterioration[J]. Gas Turbine Experiment and Research, 2015, 28(6): 34-38. (in Chinese) DOI:10.3969/j.issn.1672-2620.2015.06.007
[9] EFRON B. Bayesians, frequentists, and scientists[J]. Journal of the American Statistical Association, 2005, 100(469): 1-5. DOI:10.1198/016214505000000033
[10] 陈英武, 高妍方. 贝叶斯网络扩展研究综述[J]. 控制与决策, 2008, 23(10): 1081-1086.
CHEN Yingwu, GAO Yanfang. Survey of extended Bayesian networks[J]. Control and Decision, 2008, 23(10): 1081-1086. (in Chinese) DOI:10.3321/j.issn:1001-0920.2008.10.001
[11] JENSEN F. An introduction to Bayesian networks[M]. London: UCL Press, 1996.
[12] CAI B, HUANG L, XIE M. Bayesian networks in fault diagnosis[J]. IEEE Trans on Industrial Informatics, 2017, 13(5): 2227-2240. DOI:10.1109/TII.2017.2695583
[13] WEBER P, MEDINA-OLIVA G, SIMON C, et al. Overview on Bayesian networks applications for dependability, risk analysis and maintenance areas[J]. Engineering Applications of Artificial Intelligence, 2012, 25(4): 671-682. DOI:10.1016/j.engappai.2010.06.002
[14] 慕春棣, 戴剑彬, 叶俊. 用于数据挖掘的贝叶斯网络[J]. 软件学报, 2000, 11(5): 660-666.
MU Chundi, DAI Jianbin, YE Jun. Bayesian networks for data mining[J]. Journal of Software, 2000, 11(5): 660-666. (in Chinese)
[15] 张连文, 郭海鹏. 贝叶斯网引论[M]. 北京: 科学出版社, 2006.
ZHANG Lianwen, GUO Haipeng. Introduction to Bayesian networks[M]. Beijing: Science Press, 2006. (in Chinese)
[16] FRIEDMAN N, GEIGER D, GOLDSZMIDT M. Bayesian network classifiers[J]. Machine Learning, 1997, 29(2): 131-163.
Performance optimization scheme of turboshaft aeroengine based on Bayesian network
WANG Ning1, WANG Yuhang2, CAI Zhiqiang2, ZHANG Shuai2     
1. College of Transportation Engineering, Chang'an University, Xi'an 710064, China;
2. School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
Abstract: The turboshaft aeroengine is mainly used in helicopters. As a power device that drives the rotor to generate lift and propulsion, it has been rapidly developed in recent years. The manufacturing process of turboshaft aeroengine is complex, and there is a strict factory inspection mechanism. Only when the various performance indicators meet the qualified requirements of the factory conditions, it makes the ex factory pass rate of turboshaft aeroengine often not ideal. The key section temperature is an important indicator to characterize the performance of turboshaft aeroengine. In order to ensure the reliability of the whole machine, it has a maximum temperature limit. According to the manufacturer's suggestions, four attribute variables that affect the key section temperature are extracted to form a research data set. Then, after preprocessing the data set, the performance model for the turboshaft aeroengine is established based on the Bayesian network. According to the characteristics of Bayesian network, the posterior qualified probability is calculated through probabilistic reasoning of the performance model, and the current mainstream machine learning algorithms are introduced to compare and verify the validity of the performance model. Finally, the recommended state combination table is proposed, which provides the effective suggestions for the performance optimization of turboshaft aeroengine.
Keywords: Bayesian network    optimization scheme    turboshaft aeroengine    performance optimization    
西北工业大学主办。
0

文章信息

王宁, 王宇航, 蔡志强, 张帅
WANG Ning, WANG Yuhang, CAI Zhiqiang, ZHANG Shuai
基于贝叶斯网络的涡轴航空发动机性能优化策略
Performance optimization scheme of turboshaft aeroengine based on Bayesian network
西北工业大学学报, 2021, 39(2): 375-381.
Journal of Northwestern Polytechnical University, 2021, 39(2): 375-381.

文章历史

收稿日期: 2020-08-15

相关文章

工作空间