论文:2021,Vol:39,Issue(4):801-809
引用本文:
杜晓旭, 张连营. 翼身融合水下滑翔机剖面水翼定常吸流主动流动控制数值研究[J]. 西北工业大学学报
DU Xiaoxu, ZHANG Lianying. Numerical study on the steady suction active flow control of hydrofoil in the profile of the blended-wing-body underwater glider[J]. Northwestern polytechnical university

翼身融合水下滑翔机剖面水翼定常吸流主动流动控制数值研究
杜晓旭, 张连营
西北工业大学 航海学院, 陕西 西安 710072
摘要:
在翼身融合水下滑翔机表面上开孔并施加定常吸流可以改善滑翔机的水动力性能,为了探究定常吸流主动流动控制对翼身融合水下滑翔机剖面水翼升阻特性的影响规律和机理,基于计算流体力学(CFD)方法,采用SST k-ω湍流模型,选取NACA0015水翼并针对不同吸流偏角、不同吸流开口位置、不同吸流比等工况开展定常吸流主动流动控制研究。研究定常吸流对未失速、临界失速、过失速3种不同流动状态下二维水翼剖面升阻力系数的影响,并进一步以过失速流动为例分析其影响机理。数值研究结果表明:合理的定常吸流可以有效抑制水翼的流动分离状态,并改善水翼周围的流场分布,进而改善其升阻特性;定常吸流对NACA0015水翼的增升减阻效果在90°吸流偏角时最好,且关于90°吸流偏角对称;定常吸流的开口位置越靠近水翼前缘,其增升减阻的效果越好,越有利于水翼升阻特性的提升;吸流比越大,定常吸流对水翼升力系数和阻力系数的影响程度越大。
关键词:    水下滑翔机    NACA0015水翼    定常吸流    主动流动控制    数值研究   
Numerical study on the steady suction active flow control of hydrofoil in the profile of the blended-wing-body underwater glider
DU Xiaoxu, ZHANG Lianying
School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
The hydrodynamic performance of the blended-wing-body underwater glider can be improved by opening a hole on the surface and applying the steady suction active flow control. In order to explore the influence law and mechanism of the steady suction active flow control on the lift and drag performance of the hydrofoil,which is the profile of the blended-wing-body underwater glider, based on the computational fluid dynamics (CFD) method and SST k-ω turbulence model, the steady suction active flow control of hydrofoil under different conditions is studied, which include three suction factors:suction angle, suction position and suction ratio, as well as three different flow states:no stall, critical stall and over stall. Then the influence mechanism in over stall flow state is further analyzed. The results show that the flow separation state of NACA0015 hydrofoil can be effectively restrained and the flow field distribution around it can be improved by a reasonable steady suction, so as to the lift-drag performance of NACA0015 hydrofoil is improved. The effect of increasing lift and reducing drag of steady suction is best at 90° suction angle and symmetrical about 90° suction angle, and it is better when the steady suction position is closer to the leading edge of the hydrofoil. In addition, with the increase of the suction ratio, the influence of steady suction on the lift coefficient and drag coefficient of hydrofoil is greater.
Key words:    underwater glider    NACA0015 hydrofoil    steady suction    active flow control    numerical study   
收稿日期: 2020-11-03     修回日期:
DOI: 10.1051/jnwpu/20213940801
基金项目: 国家自然科学基金面上项目(51979227)资助
通讯作者:     Email:
作者简介: 杜晓旭(1981-),西北工业大学副教授,主要从事水下滑翔机主动流动控制研究。e-mail:nwpudu@163.com
相关功能
PDF(3382KB) Free
打印本文
把本文推荐给朋友
作者相关文章
杜晓旭  在本刊中的所有文章
张连营  在本刊中的所有文章

参考文献:
[1] 孙春亚. 翼身融合水下滑翔机外形设计与运动分析[D]. 西安:西北工业大学, 2017 SUN Chunya. Shape design and motion analysis of blended-wing-body underwater glider[D]. Xi'an:Northwestern Polytechnical University, 2017(in Chinese)
[2] DU X, ZHANG X. Influence of ocean currents on the stability of underwater glider self-mooring motion with a cable[J]. Nonlinear Dynamic, 2020, 99(3):2291-2317
[3] JENKINS S A, HUMPHREYS D E, SHERMAN J, et al. Underwater glider system Study[DB/OL]. (2003-05-06)[2020-11-03]. https://escholarship.org/uc/item/1c28t6bb
[4] DHANAK M R, XIROS N I. Springer Handbook of Ocean Engineering[M]. Switzerland:Springer, 2016:301-322
[5] 战培国, 程娅红, 赵昕. 主动流动控制技术研究[J]. 航空科学技术, 2010(5):2-6 ZHAN Peiguo, CHENG Yahong, ZHAO Xin. A review of active flow control technology[J]. Aeronautical Science & Technology, 2010(5):2-6(in Chinese)
[6] REZAEIHA A, MONTAZERI H, BLOCKEN B. Active flow control for power enhancement of vertical axis wind turbines:leading-edge slot suction[J]. Energy, 2019, 189:116131
[7] ZHANG W, ZHANG Z, CHEN Z, et al. Main characteristics of suction control of flow separation of an airfoil at low reynolds numbers[J]. European Journal of Mechanics-B/Fluids, 2017, 65:88-97
[8] 张玲, 高胜强, 赵建勋, 等. 定常吸气对风力机气动性能影响的数值模拟[J]. 太阳能学报, 2018, 39(8):2155-2162 ZHANG Ling, GAO Shengqiang, ZHAO Jianxun, et al. Research on the influence of steady suction air to aerodynamic performances[J]. Acta Energiae Solaris Sinica, 2018, 39(8):2155-2162(in Chinese)
[9] 李宇红, 唐进, 刘红. 定常吸气改善叶型气动性能的数值研究[J]. 工程热物理学报, 2005, 26(4):572-574 LI Yuhong, TANG Jin, LIU Hong. Numerical investigation of improving performances by steady suction profile air[J]. Journal of Engineering Thermophysics, 2005, 26(4):572-574(in Chinese)
[10] 张小链. 翼身融合水下滑翔机主动流动控制数值研究[D]. 西安:西北工业大学, 2020 ZHANG Xiaolian. Numerical research on active flow control of blended-wing-body underwater glider[D]. Xi'an:Northwestern Polytechnical University, 2020(in Chinese)
[11] JACOBS E N, SHERMAN A. Airfoil section characteristics as affected by variations of the reynolds number[R]. NACA-TR-586, 1937
[12] MENTER F R, KUNTZ M, LANGTRY R. Ten years of industrial experience with the SST turbulence model[C]//Proceedings of the 4th International Symposium on Turbulence, Heat and Mass Transfer, 2003:625-632
[13] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8):1598-1605
[14] ASNAAGHI A, SVENNBERG U, BENSOW R E. Evaluation of curvature correction methods for tip vortex prediction in SST k-Ω turbulence model framework[J]. International Journal of Heat and Fluid Flow, 2019, 75:135-152