论文:2021,Vol:39,Issue(4):776-785
引用本文:
隆永胜, 袁竭, 姚峰, 赵顺洪, 杨斌. 大功率电弧加热器关键技术概述[J]. 西北工业大学学报
LONG Yongsheng, YUAN Jie, YAO Feng, ZHAO Shunhong, YANG Bin. Overview of key technologies of high power arc heater[J]. Northwestern polytechnical university

大功率电弧加热器关键技术概述
隆永胜, 袁竭, 姚峰, 赵顺洪, 杨斌
中国空气动力研究与发展中心 超高速空气动力研究所, 四川 绵阳 621000
摘要:
电弧加热设备在各类高超声速飞行器热防护系统地面试验考核验证、高马赫数超燃发动机热结构及燃烧室性能模拟试验中发挥越来越重要的作用。分析了大功率电弧加热器发展需求以及大功率、高压、高焓、大电流电极烧蚀等关键技术,提出了相应的解决思路和探索方法,为我国超大功率电弧加热器的研制提供借鉴。
关键词:    大功率电弧加热器    高超声速飞行器    热防护系统    电极烧蚀   
Overview of key technologies of high power arc heater
LONG Yongsheng, YUAN Jie, YAO Feng, ZHAO Shunhong, YANG Bin
Hypervelocity Aerodynamic Institute, China Aerodynamic Research and Development Center, Mianyang 621000, China
Abstract:
Arc-heated facilties play an important role in ground tests, such as appraisal of thermal protection systems(TPS) of various hypersonic vehicles and simulation of a high Mach scramjet's thermal structure and combustion chamber performance. This paper analyzes the requirements for developing a high power arc heater. Key technologies for developing it include high power, high voltage, high enthalpy and electrode erosion in high currents. Finally, the paper proposes the related ideas and methods for these key technologies, providing theoretical references for China's development of a super-high power arc heater.
Key words:    high power arc heater    hypersonic vehicle    thermal protection system    electrode erosion   
收稿日期: 2020-12-12     修回日期:
DOI: 10.1051/jnwpu/20213940776
通讯作者: 袁竭(1987-),中国空气动力研究与发展中心助理研究员,主要从事气动热试验技术研究。e-mail:yuanjie2005@163.com     Email:yuanjie2005@163.com
作者简介: 隆永胜(1972-),中国空气动力研究与发展中心研究员,主要从事电弧加热器研究。
相关功能
PDF(1820KB) Free
打印本文
把本文推荐给朋友
作者相关文章
隆永胜  在本刊中的所有文章
袁竭  在本刊中的所有文章
姚峰  在本刊中的所有文章
赵顺洪  在本刊中的所有文章
杨斌  在本刊中的所有文章

参考文献:
[1] SMITH D M, FELDERMAN E. Aerothermal testing of space and missile materials in the Arnold engineering development center arc jet facilities[C]//AIAA Aerodynamic Measurement Technology & Ground Testing Conference, 2013
[2] DRIVER D M, CARBALLO J E, BECK R, et al. Arcjet testing in shear environment for mars science laboratory thermal protection system[C]//AIAA Thermophysics Conference, 2014
[3] SHEELEY J, FELDERMAN J. Potential for mach 8 to 12 air-breathing engine testing in an arc-heated facility[C]//AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2013
[4] WEI Bruce, HORN D D, FELDERMAN E J, et al. Arc heater development at AEDC[C]//18th AIAA Aerospace Ground Testing Conference, 1994
[5] SMITH R, WAGNER D, CUNNINGHAM J, et al. A survey of current and future plasma arc-heated test facilities for aerospace and commercial applications[C]//Proceedings of the 36th AIAA Aerospace Sciences Meeting and Exhibit, 1998
[6] WINOVICH W, BALBONI J, BALAKRISHNAN A. Experimental and analytical derivation of arc-heater scaling laws for simulating high-enthalpy environments for aeroassisted orbital transfer vehicle application[C]//AIAA 20th Thermophysics Conference, 2013
[7] BALBONI J A, GOKCEN T, HUI F C L, et al. Consolidating NASA's arc jets[C]//45th AIAA Thermophysics Conference, 2015
[8] BALBONI J, ATLER D. Development and operation of new arc heater technology for a large-scale scramjet propulsion test facility[C]//AIAA 28th Thermophysics Conference, 1993
[9] FOLCK J L, SMITH R T. Calibration of the AFFDL 50 megawatt arc heated hypersonic wind tunnel with a two-foot nozzle[R]. AFFDL-TR-69-36, 1969
[10] RICHARD T S, JAMES L F. Operating characteristics of a multi-megawatt arc heater used with the air force flight dynamics laboratory 50-megawatt facility[R]. AFFDL-TR-69-6, 1969
[11] HAMMOCK G L. Expansion of the AEDC H2 arc heater facility test envelope using cold-air mixing[C]//33rd AIAA Aerodynamic Measurement Technology and Ground Testing Conference, 2017
[12] DUBREUS T, SHEELEY J, STEWART J. Development of a mid-pressure arc-heated facility for hypersonic vehicle testing[C]//US Air Force T&E Days, 2013
[13] VOTTA MMFDFMDV R, SABATANO R. Design and feasibility of exomars supersonic parachute scirocco test[J]. Journal of Spacecraft & Rockets. 2010, 47(6):981-993
[14] ANFIMOV N. Tsniimash capabilities for aerogasdynamical and thermal testing of hypersonic vehicles[C]//Joint Propulsion Conference & Exhibit, 1992
[15] 中国空气动力研究与发展中心. 大功率电弧风洞(FD-15A、FD-15B)(2015-09-21)[2021-07-05]. http://www.cardc.cn/Dev_Read.Asp?ChannelId=4&ClassId=20&Id=15
[16] HORN D W, BRUCE I, FELDERMAN E. Results and predictions for the new H3 arc heater at AEDC[C]//Plasma Dynamics & Lasers Conference, 2013
[17] LAUB B. Use of arc-jet facilities in the design and development of thermal protection systems[C]//25th AIAA Aerodynamic Measurement Technology and Ground Testing Conference, 2006
[18] SHEELEY J, WHITTINGHAM K, MONTGOMERY P, et al. Extending arc heater operating pressure range for improved reentry simulation[C]//AIAA Aerodynamic Measurement Technology & Ground Testing Conference, 2013
[19] DURGAPAL P. Radiative transfer in the electrode region of an arc heater[C]//AIAA 27th Thermophysics Conferencee, 1992
[20] DURGAPAL P. Study of high temperature and high current arcs in the cathode region of an arc heater[C]//30th Aerospace Sciences Meeting, 1992
[21] WINOVICH W. On the equilibrium sonic-flow method for evaluating electric arc heater performance[R]. NASA TN D2132, 1964
[22] SHAEFFER J F. Swirl arc:a model for swirling, turbulent, radiative arc heater flowfields[J]. AIAA Journal. 2015, 16(10):1068-1075
[23] MACDERMOTT W, FELDERMAN E, et al. Arc heater scaling parameters predicted with the swirlarc code[C]//28th AIAA Thermophysics Conference, 1993
[24] NICOLET W E, SHEPARD C E, CLARK K J, et al. Analytical and design study for a high-pressure, high-enthalpy constricted arc heater[R]. Acurex Corporation Mountain View, TR-75-47, 1975
[25] Milos Frank S. Flowfield analysis for high-enthalpy arc heaters[J]. Journal of Thermophysics & Heat Transfer, 1992, 6(3):565-568
[26] KIM M, ALI G, ESSER B, et al., editors. Numerical and experimental study of high enthalpy flows in a hypersonic plasma wind tunnel:L3K[C]//42nd AIAA Thermophysics Conference, 2011
[27] FELDERMAN E, CHAPMAN R, JACOCKS J, et al. Development of a high pressure, high power arc heater-modeling requirements and status[C]//Plasmadynamics & Lasers Conference, 2013
[28] TAKEHARU Sakai. Computational simulation of high enthalpy arc heater flows[J]. Journal of Thermophysics & Heat Transfer, 2007, 21(1):77-85
[29] DING L, ZENG X, MERKLE C, et al. Coupled fluid-dynamic electromagnetic modeling of arc heaters[C]//AIAA Plasmadynamics & Lasers Conference, 2006
[30] LEE J I, HERDRICH G, JEONG G, et al. Numerical parameter study of low-electric-power segmented arc heaters[J]//Journal of Thermophysics & Heat Transfer, 2012, 26(2):271-285
[31] MEURISSE J, ALVAREZ LAGUNA A, MANSOUR N, et al. 3D unsteady model of arc heater plasma flow using the arc heater simulator(arches)[C]//71st Annual Gaseous Electronics Conference, 2018
[32] DONALD R B, JAMES P C, SIMON P C. Performance of multiple-chambers arc heater with four magnetically spun direct-current arcs[R]. NASA TN D-2891, 1965
[33] HORN D D, BRUCE W E, FELDERMAN E J, et al. Arc heater manifold evaluation[R]. AEDC, TR-95-28, 1996
[34] FELDERMAN E J, MACDERMOTT W N, FISHER J C. Near-electrode model at high pressure (100 atm)[C]//6th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, 1994
[35] HORN D, FELDERMAN E, MACDERMOTT W, et al. Analysis and results of external magnetic fields applied to high-pressure dc electric arc heaters[C]//Joint Thermophysics & Heat Transfer Conference, 1994
[36] PAINTER J H. High-performance arc air heater studies[C]//AIAA 10th Thermophysics Conference, 1975
[37] BENILOV M S. Understanding and modelling plasma-electrode interaction in high-pressure arc discharges:a review[J]. Journal of Physics D:Applied Physics, 2008, 41(14):144001
[38] PUCHKAREV V F, MURZAKAYEV A M. Current density and the cathode spot lifetime in a vacuum arc at threshold currents[J]. Journal of Physics D:Applied Physics, 1990, 23(1):26-35
[39] SHARAKHOVSKY L I, MAROTTA A, BORISYUK V N. A theoretical and experimental investigation of copper electrode erosion in electric arc heaters:Ⅱ. the experimental determination of arc spot parameters[J]. Journal of Physics D:Applied Physics. 1997, 30(14):2018-2025
[40] DURGAPAL P. Study of high temperature and high current arcs in thecathode region of an arc heater[C]//30th Aerospace Sciences Meeting & Exihit, 1992
[41] ARUSTAMOV V N, ASHUROV K B, KADIROV K K, et al. Structure and parameters of vacuum arc cathode spots[J]. Bulletin of the Russian Academy of Sciences:Physics, 2014, 78(6):558-562
[42] CASTO A. Contribution to the study of the electric arc erosion of metallic electrodes[R]. NASA TM-77855, 1985
[43] Sheeley Joseph M. The effect of applied magnetic field on arc spin rate in high pressure arc heaters[C]//53rd AIAA Aerospace Sciences Meeting, 2015
[44] RUDOLF C T, SHEELEY J M, SCOTT W M. Design, fabrication, and testing of a B-dot probe in arc heaters[C]//55th AIAA Aerospace Sciences Meeting, 2017
[45] ESSIPTCHOUK A M, MAROTTA A, SHARAKHOVSKY L I. The effect of arc velocity on cold electrode erosion[J]. Physics of Plasmas, 2004, 11(3):1214-1219
[46] MILOS F S, SHEPARD C E. Thermal analysis of an arc heater electrode with a rotating arc foot[J]. Journal of Thermophysics & Heat Transfer, 1993, 8(4):723-729
[47] MAROTTA A, SHARAKHOVSKY L I. A theoretical and experimental investigation of copper electrode erosion in electric arc heaters:I the thermophysical model[J]. Journal of Physics D:Applied Physics. 1996, 29(9):2395-2403
[48] FELDERMAN E, DERMOTT W. Near-electrode model with nonequilibrium ionization (at 100 atm)[C]//Plasmadynamics & Lasers Conference, 1995
[49] WEBB B T, SHEELEY J M. Investigation of the effects of shear on arc-electrode erosion using a modified arc-electrode mass loss model[C]//55th AIAA Aerospace Sciences Meeting, 2017
[50] JOCHEN R, ALEXANDER F, GERHARD S, et al. Oxidation damage of spark plug electrodes[J]. Advanced Engineering Materials, 2010, 7(7):633-640
[51] HARRIS W J. A study of cathode erosion in high power arcjets[D]. Texas:Texas Tech University, 2002
[52] YUAN J, LONG Y, ZHU T, et al. Copper cathode's ablated structure operated in a 50 megawatt arc heater[J]. Journal of Thermophysics and Heat Transfer, 2019, 33(4):1055-1064.
[53] YUAN J, LIU Y, ZHU T, et al. Cu-Y, Cu-La and Cu-Ba alloys' microstructure and ablation behavior discharging in air and SF6[J]. Vacuum. 2020, 173:109163
[54] VALERIAN Nemchinsky. Heat transfer to a cathode of a rotating arc[J]. Plasma Sources Science & Technology, 2015, 24(3):035013
[55] SHOPE F L. Conceptual thermal design of a 200 atm, water cooled arc heater nozzle[C]//AIAA 28th Thermophysics Conference, 1993
[56] KIM S. Development of tunable diode laser absorption sensors for a large-scale arc-heated-plasma wind tunnel[D]. Stanford:Stanford University, 2004
[57] 曾徽, 陈智铭, 闫宪翔, 等. 电弧加热器铜污染组分效应发射光谱定量研究[J]. 航空学报, 2019 ZENG Hui, CHEN Zhiming, YAN Xianxiang, et al. Quantitative measurements of copper contamination in arc heater by using emission spectroscopy[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(4):12351(in Chinese)
[58] 林鑫, 曾徽, 彭锦龙, 等. 基于原子发射光谱的中低焓电弧加热器漏水故障诊断[J]. 实验流体力学, 2019, 33(5):81-86 LIN Xin, ZENG Hui, PENG Jinlong, et al. Atomic emission spectroscopy diagnostics for leak detection of cooling water in a low-enthalpy arc heater[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(5):81-86(in Chinese)
[59] 郑琼林. 大功率电弧加热器电源的设计研究[J]. 电力电子技术, 2009, 43(10):189-194 ZHENG Qionglin. Study on High power converter for arc heater applications[J]. Power Electronics, 2009, 43(10):189-194(in Chinese)
[60] 郭文杰. 航天器大气环境模拟用高压大功率电弧加热器电源系统研究[D]. 北京:北京交通大学, 2008 GUO Wenjie. Power supply system of high-voltage, high-power arc heater for reentry environment simulation[D]. Beijing:Beijing Jiaotong University, 2008(in Chinese)
[61] PAINTER J H. High pressure arc heater electrode heat transfer study[J]. AIAA Journal, 2015, 13(12):1555-1556