论文:2021,Vol:39,Issue(1):167-174
引用本文:
李煜, 刘小雄, 何启志, 章卫国, 黄天鹏. 基于改进的分段常数自适应动态逆控制方法研究[J]. 西北工业大学学报
LI Yu, LIU Xiaoxiong, HE Qizhi, ZHANG Weiguo, HUANG Tianpeng. An adaptive dynamic inversion control method based on improved piecewise constant for flight control system[J]. Northwestern polytechnical university

基于改进的分段常数自适应动态逆控制方法研究
李煜1,2, 刘小雄1,2, 何启志1,2, 章卫国1,2, 黄天鹏3
1. 西北工业大学 自动化学院, 陕西 西安 710129;
2. 陕西省飞行控制与仿真技术重点实验室, 陕西 西安 710129;
3. 中国航空工业集团公司西安飞行自动控制研究所, 陕西 西安 710076
摘要:
针对非线性动态逆控制在扰动影响下鲁棒性不足的问题,提出一种适用于工程的基于改进分段常数自适应动态逆控制方法,用于增强控制系统对干扰的鲁棒性以及提高控制响应的准确性。在扰动影响下对模型做出合理的分析;提出了适用于飞行控制系统的改进的分段常数自适应动态逆控制方法;证明了设计的控制器在扰动影响下的稳定性和动态特性,以及改进后的分段常数自适应的误差收敛范围;对飞机模型进行描述给出了符合实际战斗机控制需求的自适应动态逆角速度控制策略,并且基于改进后的方法设计控制律并在执行机构故障和重心突变扰动下进行仿真,对比验证了基于改进的分段常数自适应动态逆方法设计的控制器的鲁棒性和动态性能。结果表明基于改进的分段常数自适应动态逆控制具有鲁棒性强、控制精度高的特点。
关键词:    自适应动态逆控制    改进的分段常数自适应    角速度控制律    鲁棒性   
An adaptive dynamic inversion control method based on improved piecewise constant for flight control system
LI Yu1,2, LIU Xiaoxiong1,2, HE Qizhi1,2, ZHANG Weiguo1,2, HUANG Tianpeng3
1. School of Automation, Northwestern Polytechnical University, Xi'an 710129, China;
2. Shaanxi Province Key Laboratory of Flight Control and Simulation Technology, Xi'an 710129, China;
3. AVIC Xi'an Flight Automatic Control Research Institute, Xi'an 710076, China
Abstract:
To overcome the lack of robustness of the nonlinear dynamic inversion (NDI) control, a simple and practical adaptive NDI control method based on an improved piecewise constant is proposed in this paper to enhance its robustness to disturbances and improve the accuracy of response tracking. Firstly, reasonable assumptions and analyses are made for the system with the influence of disturbance. Secondly, an improved piecewise constant adaptive NDI control method suitable for general flight control systems is proposed. The stability of the control system with disturbance and the error convergence range of the improved piecewise constant adaptive control are proved and analyzed theoretically. Finally, taking into account the fighter actual control requirements, the angular rates control strategy is given, and the proposed method is applied to the angular rates flight controller design. Matlab simulations are carried out under the disturbance of the actuator failure and the sudden change of the center of gravity, and the robustness and dynamic performance of the controller designed based on the present method is compared and verified. The results illustrate that our present method has stronger robustness and higher control accuracy.
Key words:    adaptive dynamic inversion control    improved piecewise constant    angular rate control    robustness    matlab simulation    flight control system    controller design   
收稿日期: 2020-09-02     修回日期:
DOI: 10.1051/jnwpu/20213910167
基金项目: 国家自然科学基金(62073266)与航空科学基金(201905053003)资助
通讯作者: 刘小雄(1973-),西北工业大学副教授,主要从事导航制导与控制。e-mail:liuxiaoxiong@nwpu.edu.cn     Email:liuxiaoxiong@nwpu.edu.cn
作者简介: 李煜(1994-),西北工业大学博士研究生,主要从事飞行控制与控制方法研究。
相关功能
PDF(1782KB) Free
打印本文
把本文推荐给朋友
作者相关文章
李煜  在本刊中的所有文章
刘小雄  在本刊中的所有文章
何启志  在本刊中的所有文章
章卫国  在本刊中的所有文章
黄天鹏  在本刊中的所有文章

参考文献:
[1] SNELL S A, ENNS D F, GARRARD W L, et al. Nonlinear inversion flight control for a supermaneuverable aircraft[J]. Journal of Guidance Control and Dynamics, 1990, 15(4): 976-984
[2] WANG X, VAN K E, CHU Q P, et al. Flexible aircraft gust load alleviation with incremental nonlinear dynamic inversion[J]. Journal of Guidance Control and Dynamics, 2019, 42(7): 1519-1536
[3] SIMPLICIO P, PAVEL M D, VAN KAMPEN E, et al. An acceleration measurements-based approach for helicopter nonlinear flight control using incremental nonlinear dynamic inversion[J]. Control Engineering Practice, 2013, 21(8): 1065-1077
[4] ELIZABETH Rollins, JOHN Valasek, JONATHAN A. Muse. Nonlinear adaptive dynamic inversion applied to a generic hypersonic vehicle[C]//AIAA Guidance, Navigation, and Control Conference, 2013
[5] 周俊, 江驹, 余朝军, 等. 改进神经网络动态逆着舰控制方法[J]. 哈尔滨工程大学学报, 2018, 39(10): 1649-1654 ZHOU Jun, JIANG Ju, YU Chaojun, et al. Carrier aircraft dynamic inversion landing control based on improved neural network[J]. Journal of Harbin Engineering University, 2018, 39(10): 1649-1654(in Chinese)
[6] 葛云龙, 章卫国. 基于最优控制的神经网络自适应飞行控制[J]. 电光与控制, 2012,19(7): 13-17 GE Yunlong, ZHANG Weiguo. Optimal control based neural network adaptive flight control[J]. Electronics Optics & Control, 2012, 19(7): 13-17(in Chinese)
[7] WANG Xuerui, VAN KAMPEN E J, CHU Q, et al. Stability analysis for incremental nonlinear dynamic inversion control[J]. Journal of Guidance, Control, and Dynamics, 2019, 42: 1116-1129
[8] SIEBERLING S, CHU Q P, MULDER J A, et al. Robust flight control using incremental nonlinear dynamic inversion and angular acceleration prediction[J]. Journal of Guidance Control and Dynamics, 2010, 33(6): 1732-1742
[9] XU B, YANG C, SHI Z. Reinforcement learning output feedback NN control using deterministic learning technique[J]. IEEE Trans on Neural Networks and Learning Systems, 2014, 25(3): 635-641
[10] HAIRA H, CAO Chengyu. L1 adaptive control theory[J]. Chest, 2010, 108(4): 1182-1183
[11] TYLER Leman, ENRIC Xargay, GEIR Dullerud, et al. L1 adaptive control augmentation system for the X-48B aircraft[C]//AIAA Guidance, Navigation, and Control Conference, 2009