论文:2020,Vol:38,Issue(2):384-391
引用本文:
李国爱, 王亮, 郝敏, 王向杰, 陆政. 2060铝锂合金薄板组织特征及疲劳损伤行为[J]. 西北工业大学学报
LI Guoai, WANG Liang, HAO Min, WANG Xiangjie, LU Zheng. Microstructure Characteristic and Fatigue Damage Behaviors of 2060 Al-Li Alloy Thin Plate[J]. Northwestern polytechnical university

2060铝锂合金薄板组织特征及疲劳损伤行为
李国爱1,2, 王亮1,2, 郝敏1,2, 王向杰3, 陆政1,2
1. 北京航空材料研究院, 北京 100095;
2. 北京市先进铝合金材料及应用工程技术研究中心, 北京 100095;
3. 东北大学 材料电磁过程研究教育部重点实验室, 辽宁 沈阳 110819
摘要:
通过带有原位观察设备的疲劳试验机、金相显微镜、EBSD、SEM以及TEM等设备对进口2060-T8E30铝锂合金薄板的组织特征、疲劳损伤行为以及疲劳试验过程中微观组织的演变过程进行了系统研究。结果表明,2060铝锂合金薄板为完全再结晶的块状嵌套组织,织构类型以立方织构和高斯织构为主,晶内析出相主要为T1相,长度在50~60 nm左右;轴向加载疲劳试验时,裂纹在试样边部缺口附近晶粒中沿最大Schmid因子方向萌生并向晶内扩展,在到达并穿过第一个晶界后裂纹发生偏折,变为垂直于加载方向扩展,继续扩展时,裂纹遇到其他晶界后发生小的偏折,但基本方向不变,直至最终发生瞬断。裂纹萌生和扩展过程中,裂纹尖端出现了较大范围的塑性变形区,该区域中T1析出相被位错切过,降低了尖端的应力集中。合金中较大的晶粒取向差以及小尺寸可被位错切过的T1析出相,是疲劳裂纹呈"锯齿"状穿晶扩展并获得良好耐损伤性能的主要原因。
关键词:    2060铝锂合金    轴向疲劳试验    疲劳损伤行为    织构    T1析出相    Schmid因子    裂纹扩展    应力集中   
Microstructure Characteristic and Fatigue Damage Behaviors of 2060 Al-Li Alloy Thin Plate
LI Guoai1,2, WANG Liang1,2, HAO Min1,2, WANG Xiangjie3, LU Zheng1,2
1. Beijing Institute of Aeronautical Materials, Beijing 100095, China;
2. Beijing Engineering Research Center of Advanced Aluminum Alloys and Applications, Beijing 100095, China;
3. Key Lab of Electromagnetic Processing of Materials, Northeastern university, Shenyang 110819, China
Abstract:
The microstructure characteristic, fatigue damage behaviours and evolution of microstructure during the fatigue testing of 2060 Al-Li alloy thin plate were studied by fatigue tester equipped with in-situ observation device, OM, EBSD, SEM and TEM. The results show that recrystallized grains with irregularity shape and large size are observed, the Goss and Cube texture are the mainly types, abundant of T1 with size of 50~60nm are found in grains. During axial loaded fatigue testing, a crack initiates from the edge of sample and extend into grain along the direction with maximum Schmid factor. When the crack reaches and crosses the first grain boundary, the extending direction deflects from 45° degree to perpendicular with loading direction, and propagates along this direction till the sample quickly fracture. A large size deformation region contains numerous slip strips around the crack tip during the initiation and extending process is observed. The dislocations cut across the T1 precipitates located in grains during deformation, and release the stress concentration on the crack tip. The fatigue crack extends across the grains with serrated shape can result from the big orientation difference of grains and easy screwed T1 precipitates.
Key words:    2060 Al-Li alloy    axial loaded fatigue testing    fatigue damage behavior    texture    T1 precipitate    Schmid factor    crack extending    stress concentration   
收稿日期: 2019-04-09     修回日期:
DOI: 10.1051/jnwpu/20203820384
基金项目: 国家自然科学基金项目(51474195,U1708251,51574075,U1608252)资助
通讯作者:     Email:
作者简介: 李国爱(1978-),北京航空材料研究院高级工程师,主要从事铝锂合金成分设计及应用研究。
相关功能
PDF(1168KB) Free
打印本文
把本文推荐给朋友
作者相关文章
李国爱  在本刊中的所有文章
王亮  在本刊中的所有文章
郝敏  在本刊中的所有文章
王向杰  在本刊中的所有文章
陆政  在本刊中的所有文章

参考文献:
[1] MERIC C. Physical and Mechanical Properties of Cast under Vacuum Aluminum Alloy 2024 Containing Lithium Additions[J]. Mater Res Bull, 2000, 35:1479-1484
[2] ACOSTA E, GARCIA O, DAKESSIAN A, et al. On the Effect of Thermomechanical Processing on the Mechanical Properties of 2297 Plates[J]. Mater Sci Forum, 2002, 1157:396-402
[3] LEQUEU P, LASSINCE P, WARNER T. Aluminum Alloy Development for the Airbus A380-Part 2[J]. Adv Mater Processes, 2007, 165(7):41-44
[4] LEQUEU P. Advances in Aerospace Aluminum[J]. Adv Mater Processes, 2008, 166(2):47-49
[5] RIOJA R J, LIU J. The Evolution of Al-Li Base Products for Aerospace and Space Applications[J]. Met Mater Trans A, 2012, 43A:3325-3337
[6] Karabin L M, Bray G H, Rioja R J, et al. Al-Li-Cu-Mg-(Ag) Products for Lower Wing Skin Applications[J]. TMS, 2012, 13:529
[7] MORAN J P, BOVARD F S, CHRZAN J D, et al. Corrosion Performance of New Genaration Aluminum-Lithium Alloys for Aerospace Applications[J]. TMS, 2012, 13:425-430
[8] DENZER D K, RIOJA R J, BRAY G H, et al. The Evolution of Plate and Extruded Products with High Strength and Fracture Toughness[J]. TMS, 2012, 13:587-592
[9] JIN Xiao, FU Baoqin, ZHANG Chenglu, et al. Strain Localization and Damage Development in 2060 Alloy during Bending[J]. International Journal of Minerals, Metallurgy and Materials, 2015, 22(12):1313-1321
[10] EIATY Aliabd, XU Yong, HA Sangyul, et al. Computational Homogenization of Tensile Deformation Behaviors of a Third Generation Al-Li Alloy 2060-T8 Using Crystal Plasticity Finite Element Method[J]. Materials Science & Engineering A, 2018, 731:583-594
[11] YAN Keng, WANG Tianyu, LIANG Haimei, et al. Effects of Rotation Speed on Microstructure and Mechanical Properties of 2060 Al-Cu-Li Alloy in Friction Stir Welding[J]. JMEPEG, 2018, 27:5803-5808
[12] GU Cheng, WEI Yanhong, ZHAN Xiaohong, et al. Investigation of Welding Parameters on Microstructure and Mechanical Properties of Laser Beam-Welded Joint of 2060 Al-Cu-Li Alloy[J]. Int J Adv Manuf Technol, 2017, 91:771-780
[13] PENG Jingwen, LI Weidong, WAN Min, et al. Investigation on Three-Roller Cylindrical Bending of 2060-T8 Al-Li Alloy Plate for Aircraft Fuselage Skin Components[J]. Int J Mater Form, 2018, 11:269-273
[14] LI F D, LIU Z Y, WU W T, et al. On the Role of Texture in Governing Fatigue Crack Propagation Behavior of 2524 Aluminum Alloy[J]. Materials Science & Engineering A, 2016, 669:367-378
[15] SANGID M D, MAIER H J, SEHITOGLU H. The Role of Grain Boundaries on Fatigue Crack Initiation-an Energy Approach[J]. International Journal of Plasticity, 2011, 27:801-821
[16] CHEN Y Q, PAN S P, ZHOU M Z, et al. Effects of Inclusions, Grain Boundaries and Grain Orientations on the Fatigue Crack Initiation and Propagation Behavior of 2524-T3 Al Alloy[J]. Materials Science & Engineering A, 2013, 580:150-158
[17] SRIVATSAN T S, KOLAR D, MAGNUSEN P. The Cyclic Fatigue and Final Fracture Behavior of Aluminum Alloy 2524[J]. Materials and Design, 2002, 23:129-139
[18] BRAY G H, GLAZOV M, RIOJA R J, et al. Effect of Artificial Aging on the Fatigue Crack Propagation Resistance of 2000 Series Aluminum Alloys[J]. International Journal of Fatigue, 2001, 23:265-276
[19] JAMES Fragomeni, ROBERT Wheeler, JATA K V. Effect of Single and Duplex Aging on Precipitation Response, Microstructure, and Fatigue Crack Behavior in Al-Li-Cu Alloy AF/C-458[J]. JMEPEG, 2005:14(1):18-27
[20] ZHONG Jing, ZHONG Shen, ZHENG Ziqiao, et al. Fatigue Crack Initiation and Early Propagation Behavior of 2A97 Al-Li Alloy[J]. Trans Nonferrous Met Soc China, 2014, 24:303-309
[21] DECREUS B, DESCHAMPS A, GEUSER F D, et al. The Influence of Cu/Li Ratio on Precipitation in Al-Cu-Li-x Alloys[J]. Acta Mater, 2013, 61:2207-2218
[22] GABLE B M, ZHU A W, CSONTOS A A. The Role of Plastic Deformation on the Competitive Microstructural Evolution and Mechanical Properties of a Novel Al-Li-Cu-X Alloy[J]. J Light Met, 2001, 1:1-14
[23] 斯海维. 结构与材料的疲劳[M]. 吴学仁,译. 北京:航空工业出版社,2014:71 SCHIJVE J. Fatigue of Structures and Materials Second Edition[M]. WU Xueren, (Translator). Beijing:Aviation Industry Press, 2014:71(in Chinese)
[24] ZHAI T, JIANG X P, LI J X, et al. The Grain Boundary Geometry for Optimum Resistance to Growth of Short Fatigue Cracks in High Strength Al-Alloys[J]. International Journal of Fatigue, 2004, 27(10/11/12):1202-1209
[25] WU X J, WALLACE W, RAIZENNE M D, et al. The Orientation Dependence of Fatigue-Crack Growth in 8090 Al-Li Plate[J]. Metall Mater Trans A, 1994, 25:575-581
[26] SURESH S. Fatigue Crack Deflection and Fracture Surface Contact:Micromechanical Models[J]. Metall Trans A, 1982, 16:249-258
[27] BLANKENSHIP J C P, HORNBOGEN E, STARKE J E A. Predicting Slip Behavior in Alloys Containing Shearable and Strong Particles[J]. Mater Sci Eng A, 1993, 169:33-44
相关文献:
1.夏仲纯, 马玉娥, 云双, 熊晓枫.玻璃纤维增强铝合金层板的裂纹扩展特性研究[J]. 西北工业大学学报, 2013,31(6): 891-895