论文:2020,Vol:38,Issue(2):261-270
引用本文:
李虹杨, 郑赟. 基于时域方法的非定常流-热耦合数值模拟研究[J]. 西北工业大学学报
LI Hongyang, ZHENG Yun. Flow-Heat Conjugate Numerical Simulation Based on the Time-Domain Method[J]. Northwestern polytechnical university

基于时域方法的非定常流-热耦合数值模拟研究
李虹杨1, 郑赟2
1. 沈阳飞机设计研究所, 辽宁 沈阳 110035;
2. 北京航空航天大学 能源与动力工程学院, 北京 100083
摘要:
为研究基于时间推进的非定常流-热耦合数值模拟方法在具有时间周期性特征的物理问题中的适用性,利用课题组HGFS程序平台完成了平板对流换热以及带有周期性热斑的空心钝头叶片等算例的数值模拟,并在时域和频域范畴对非定常计算结果进行了深入分析,得到的主要结论如下:平板对流换热的数值模拟结果表明,流体域热对流的时间尺度为10-3 s量级,而固体域热传导的时间尺度为秒的量级,时间尺度的差异可能会导致计算量急剧增加,甚至使基于时间推进的计算方法失效;对简化涡轮叶片的非定常计算表明,热斑的扫过频率增加到原来的5倍时,叶片内部温度波的一阶幅值减小为原来的50.4%,由0.343 K减小到0.173 K,而渗透深度减小为原来的42.8%,由5.21 mm减小到2.23 mm,频率的增加会使温度波动幅值和渗透深度显著降低。
关键词:    非定常    流-热耦合    时域    计算流体力学   
Flow-Heat Conjugate Numerical Simulation Based on the Time-Domain Method
LI Hongyang1, ZHENG Yun2
1. Shengyang Aircraft Design and Research Institute, Shenyang 110035, China;
2. School of Energy and Power Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100083, China
Abstract:
For the popups of the applicability of the time-domain based unsteady flow-heat coupling numerical simulation method in physical problems with time-period characteristic, the cases of the plate convection heat transfer and the hollow blunt-nosed blade with periodic hot spots were conducted through the internal CFD code namely HGFS. The unsteady results are analysed both in the time——domain and the frequency-domain and the main conclusions are as follows:the numerical simulation results of the plate convection heat transfer indicate that the time-scale of heat convention in the fluid domain is 10-3 s order of magnitude, while that of heat conduction in solid domain is seconds. Thus, the disparity of time scale may lead to a sharp increase in the amount of calculation, and even lead to failure of the calculation method based on time-domain. The unsteady numerical simulation of the simplified turbine blade with hot spots shows that, when the sweep frequency increases to 5 times of the original, the first-order amplitude of the temperature wave in the blade decreases to 50.4%, from 0.343 K to 0.173 K, and the corresponding penetration depth decreases to 42.8%, from 5.21 mm to 2.23 mm. The temperature fluctuation amplitude and penetration depth reduce significantly with the increasing of frequency.
Key words:    unsteady    flow-heat conjugate    time-domain    CFD   
收稿日期: 2019-05-13     修回日期:
DOI: 10.1051/jnwpu/20203820261
通讯作者:     Email:
作者简介: 李虹杨(1989-),沈阳飞机设计研究所工程师、博士,主要从事流-热耦合数值模拟、边界层转捩预测与飞行器布局及进/排气设计研究。
相关功能
PDF(1301KB) Free
打印本文
把本文推荐给朋友
作者相关文章
李虹杨  在本刊中的所有文章
郑赟  在本刊中的所有文章

参考文献:
[1] 林宏镇,汪火光,蒋章焰. 高性能航空发动机传热技术[M]. 北京:国防工业出版社, 2005 LIN Hongzhen, WANG Huoguang, JIANG Zhangyan. High Performance Aeroengine Heat Transfer Technology[M]. Beijing:National Defense Industry Press, 2005(in Chinese)
[2] 尹钊, 方祥军, 刘思永,等. 超跨音内冷涡轮流热耦合数值模拟研究[J]. 中国电机工程学报, 2013, 33(14):114-120 YIN Zhao, FANG Xiangjun, LIU Siyong, et al. Conjugate Heat Transfer Analysis of Transonic Internally Cooled Turbine Blades[J]. Proceedings of the CSEE, 2013, 33(14):114-120(in Chinese)
[3] YOSHIARA T, SASAKI D, NAKAHASHI K. Conjugate Heat Transfer Simulation of Cooled Turbine Blades Using Unstructured-Mesh CFD Solver[R]. AIAA-2011-0498
[4] BOHN D, HEUER T. Conjugate Flow And Heat Transfer Calculation of a High-Pressure Turbine Nozzle Guide Vane[R]. AIAA-2001-3304
[5] GUPTA J A. Application of Conjugate Heat Transfer(CHT) Methodology for Computation of Heat Transfer on a Turbine Blade[D]. Columbus:The Ohio State University, 2009
[6] BOHN D, REN J. Cooling Performance of the Steam-Cooled Vane in a Steam Turbine Cascade[R]. ASME-GT2005-68148
[7] KUSTERER K, HAGEDORN T, BOHN D, et al. Improvement of a Film-Cooled Blade by Application of the Conjugate Calculation Technique[J]. Journal of Turbomachinery, 2006, 128(3):572-578
[8] RIGBY D L, LEPICOVSKY J. Conjugate Heat Transfer Analysis of Internally Cooled Configurations[R]. ASME-GT2001-0405
[9] CROCE G A. Conjugate Heat Transfer Procedure for Gas Turbine Blades[J]. Annals of New York Academy of Sciences, 2001, 934:273-280
[10] 冯国泰,黄家骅,李海滨,等. 涡轮发动机三维多流场耦合数值仿真的数学模型[J]. 上海理工大学学报,2001,23(3):189-192 FENG Guotai, HUANG Jiaye, LI Haibin, et al. Mathematical Model of Three-Dimensional Multi-Field Coupled in Gas Turbine Engine[J]. Journal of University of Shanghai for Science and Technology, 2001,23(3):189-192(in Chinese)
[11] YUTING J, QUN Z, PING D, et al. Numerical Simulation on Turbine Blade LeadingvEdge High-Efficiency Film Cooling by the Application of Water Mist[J]. Numerical Heat Transfer Part A, Applications, 2014, 66(12):1341-1364
[12] INSINNA M, GRIFFINI D, SALVADORI S, et al. Film Cooling Performance in a Transonic High-Pressure Vane:Decoupled Simulation and Conjugate Heat Transfer Analysis[J]. Energy Procedia, 2014, 45:1126-1135
[13] HO K S, LIU J, URWILLER C, et al. Conjugate Heat Transfer Analysis of a Cooled Turbine Blade Using Frozen Rotor Approach[R]. ASME-GT2015-43699
[14] TUCKER P G. Computation of Unsteady Turbomachinery Flows:Part 1-Progress and Challenges[J]. Progress in Aerospace Sciences, 2011, 47(7):522-545
[15] FUNAZAKI K I, TETSUKA N, TANUMA T. Effects of Periodic Wake Passing upon Aerodynamic Loss of a Turbine Cascade Part I:Measurements of Wake-Affected Cascade Loss by Use of a Pnuemetic Probe[R]. ASME-GT1999-093
[16] ARDEY S, FOTTNER L. Flow Field Measurements on a Large-Scale Turbine Cascade with Leading Edge Film Cooling by Two Rows of Holes[R]. ASME-GT1997-524
[17] 周莉, 张鑫, 蔡元虎. 非定常尾迹宽度对气膜冷却效果的影响[R]. 中国电机工程学报, 2012, 31(29):97-102 ZHOU Li, ZHANG Xin, CAI Yuanhu. Effect of Unsteady Wake Width on the Film-Cooling Effectiveness for a Gas Turbine Blade[J]. Proceedings of the CSEE, 2012, 31(29):97-102(in Chinese)
[18] 李虹杨, 郑赟. 动静干涉对涡轮转子叶片气膜冷却的影响[J]. 北京航空航天大学学报, 2016, 42(1):139-146 LI Hongyang, ZHENG Yun. Effect of Rotor-Stator Interaction on Film-Cooling of Turbine Blade[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(1):139-146(in Chinese)
[19] 李虹杨, 郑赟. 尾迹对涡轮叶栅边界层转捩的影响[J]. 推进技术, 2017, 38(3):532-538 LI Hongyang, ZHENG Yun. Effect of Wake on Boundary Layer Transition of Turbine Cascade[J]. Journal of Propulsion Technology, 2017, 38(3):532-538(in Chinese)
[20] 郑赟, 李虹杨, 刘大响. γ-Reθ转捩模型在高超声速下的应用及分析[J]. 推进技术, 2014, 35(3):296-304 ZHENG Yun, LI Hongyang, LIU Daxiang. Application and Analysis of γ-Reθ Transition Model in Hypersonic Flow[J]. Journal of Propulsion Technology, 2014, 35(3):296-304(in Chinese)
[21] LI Hongyang, ZHENG Yun. Effect of Surface Roughness on Conjugate Heat Transfer of a Turbine Vane[R]. ASME-GT2016-56744
[22] 曹玉璋. 传热学[M]. 北京:北京航空航天大学出版社, 2001:40-44 CAO Yuzhang. Heat Transfer[M]. Beijing:Beihang University Press, 2001:40-44(in Chinese)
相关文献:
1.杨磊, 叶正寅.基于模糊逻辑方法的涵道风扇飞行器非定常气动力建模及应用[J]. 西北工业大学学报, 2014,32(6): 849-856
2.郭东, 徐敏, 陈士橹.基于网格速度法的非定常流场模拟和动导数计算[J]. 西北工业大学学报, 2012,30(5): 784-788
3.陈浩, 徐敏, 蔡天星.高超声速机翼瞬态气动加热下热颤振分析[J]. 西北工业大学学报, 2012,30(6): 898-904