论文:2020,Vol:38,Issue(1):84-94
引用本文:
牛浩田, 马存宝, 韩佩, 孙笑言. 民机气象雷达任务过程安全性分析方法研究[J]. 西北工业大学学报
NIU Haotian, MA Cunbao, HAN Pei, SUN Xiaoyan. Study on Safety Analysis Method to Task Process of Civil Aircraft Weather Radar System[J]. Northwestern polytechnical university

民机气象雷达任务过程安全性分析方法研究
牛浩田1, 马存宝1, 韩佩2, 孙笑言1,3
1. 西北工业大学 航空学院, 陕西 西安 710072;
2. 中国电子科技集团公司第20研究所 通信事业部, 陕西 西安 710068;
3. 杭州公共交通云科技有限公司 数据中台产品部, 浙江 杭州 310051
摘要:
针对气象雷达系统任务过程安全性问题,以基于系统论的事故模型及过程(systems-theoretic accident model and process)理论方法为基础,提出了一种案例激励安全性分析方法。在进近阶段机载气象雷达任务过程中,通过构建系统分层控制结构,识别系统任务过程中存在的不安全控制行为,并辨识与不安全控制行为关联的潜在危险致因;构建安全飞行控制结构模型,以达美航空事故为例,提出安全约束建议控制事故衍变机制来优化模型,以提高系统任务过程安全。以上分析表明,该方法能更全面地识别系统深层危险致因,为机载气象雷达的安全性设计提供技术支持。
关键词:    机载气象雷达    任务过程    安全性    系统论    事故模型    过程模型    STAMP理论方法    案例激励    进近阶段    系统分层控制结构    不安全控制行为    飞行事故    危险致因    安全约束    事故衍变机制    模型优化    安全性设计    技术支持   
Study on Safety Analysis Method to Task Process of Civil Aircraft Weather Radar System
NIU Haotian1, MA Cunbao1, HAN Pei2, SUN Xiaoyan1,3
1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
2. Communication Division, 20thInstitute, China Electronics Technology Group Corporation, Xi'an 710068, China;
3. Data Center, DT Intelligence Public Transport, Hangzhou 310051, China
Abstract:
To solve the task-process-safety problem of airborne weather radar system, a set of case-inspired safety analysis method is proposed based on the STAMP(Systems-Theoretic Accident Model and Process). Taking weather radar system's task process in approaching stage as an example, a hierarchical control structure is constructed to identify unsafe control actions during the task process, and analyze the potential hazard causes associating with unsafe control actions. Then a safe flight control structure model is constructed and the accident case of Delta Airlines is analyzed to optimize the model. The safety of system task process is improved through putting forward the safe constraints which can control the propagation mechanism of accident. It is indicated through the above analysis that the method can comprehensively identify the potential hazard causes of system, and provide technical support for the safety design of airborne weather radar system.
Key words:    airborne weather radar    task process    system theory    accident model    process model    STAMP theoretical method    case-inspired    approaching stage    hierarchical control structure    unsafe control action    flight accident    hazardous causes    safe constraint    evolution mechanism of accident    model optimization    safety design    technical support   
收稿日期: 2019-04-01     修回日期:
DOI: 10.1051/jnwpu/20203810084
基金项目: 国家重点基础研究发展项目(2014CB744902)资助
通讯作者:     Email:
作者简介: 牛浩田(1989-),西北工业大学博士研究生,主要从事机载系统任务安全性分析研究。
相关功能
PDF(2211KB) Free
打印本文
把本文推荐给朋友
作者相关文章
牛浩田  在本刊中的所有文章
马存宝  在本刊中的所有文章
韩佩  在本刊中的所有文章
孙笑言  在本刊中的所有文章

参考文献:
[1] RASMUSSEN J. Risk Management in a Dynamic Society:A Modelling Problem[J]. Safety Science, 1997, 27(2/3):183-213
[2] SWUSTE P, GULIJK C V. Developments in the Safety Science Domain, in the Field of General and Safety Management between 1970 and 1979, the Year of the Near Disaster on Three Mile Island, a Literature Review[J]. Safety Science, 2016, 86:10-26
[3] SHLAPATSKYI V O, KAMAK Y O, ANDRIYENKO O V, et al. A Fault Tree of Unmanned Aircraft Systems for Military Applications[C]//IEEE 4th International Conference Actual Problems of Unmanned Aerial Vehicles Developments, Ukraine, Kiev, 2017:104-107
[4] MUZIK V, VOSTRACKY Z. Possibilities of Event Tree Analysis Method for Emergency States in Power Grid[C]//IEEE 19th International Scientific Conference on Electric Power Engineering, Brno, Czech Republic, 2018:1-5
[5] YAZDI M, DANESHVAR S, SETAREH H. An Extension to Fuzzy Developed Failure Model and Effects Analysis(FDFMEA) Application for Aircraft Landing System[J]. Safety Science, 2017, 98:113-123
[6] MOHAGHEGH Z. Combing System Dynamic and Bayesian Belief Networks for Socio-Technical Risk Analysis[C]//IEEE International Conference on Intelligence & Security Informatics Vancouver, BC, Canada, 2010:196-201
[7] BLOM H A P, BAKKER G J. Safety Evaluation of Advanced Self-Separation under very High Enroute Traffic Demand[J]. Journal of Aerospace Information Systems, 2015, 12(6):413-427
[8] LEVESON N G. Rasmussen's legacy:a Paradigm Change in Engineering for Safety[J]. Applied Ergonomics, 2017, 59(B):581-591
[9] FLEMING C H, LEVENSON N G. Improving Hazard Analysis and Certification of Integrated Modular Avionics[J]. Journal of Aerospace Information Systems, 2014, 11(6):397-411
[10] ALLISION C K, REVELL K M, SEARS R, et al. Systems Theoretic Accident Model and Process(STAMP) Safety Modelling Applied to an Aircraft Rapid Decompression Event[J]. Safety Science, 2017, 98:159-166
[11] ISHIMATSU T, LEVESON N G, THOMAS J P, et al. Hazard Analysis of Complex Spacecraft Using Systems-Theoretic Process Analysis[J]. Journal of Spacecraft and Rockets, 2014, 51(2):509-522
[12] ROKSETH B, UTNE I B, VINNEM J E. Deriving Verification Objectives and Scenarios for Maritime Systems Using the System-Theoretic Process Analysis[J]. Reliability Engineering & System Safety, 2018, 169:18-31
[13] DVZGVN H S, LEVESON N. Analysis of Soma Mine Disaster Using Causal Analysis Based on Systems Theory(CAST)[J]. Safety Science, 2018, 110(A):37-57
[14] WANG Rui, ZHENG Wei, LIANG Ci, et al. An integrated Hazard Identification Method Based on the Hierarchical Colored Petri Net[J]. Safety Science, 2016, 88:166-179
[15] NIU Haotian, MA Cunbao, WANG Chen, et al. Hazard Analysis of Traffic Collision Avoidance System Based on STAMP Model[C]//International Conference on Progress in Informatics and Computing, Suzhou, 2018:445-450
[16] ROGER W S, RUSSELL J B, JOHN L, et al. Weather in the Cockpit:Priorities, Source, Delivery, and Needs in the Next Generation Air Transportation System[R]. Office of Aerospace Medicine, Federal Aviation Administration, DOT/FAA/AM-12/7