论文:2019,Vol:37,Issue(6):1085-1094
引用本文:
黄德东, 温晶晶, 邢亮亮, 卫国宁, 吴斌. 半正弦波形发生器的非线性动力学模型及模型参数标定方法研究[J]. 西北工业大学学报
HUANG Dedong, WEN Jingjing, XING Liangliang, WEI Guoning, WU Bin. Study on a Nonlinear Dynamic Model and Its Parameters Determination Method for Half-Sine Programmer[J]. Northwestern polytechnical university

半正弦波形发生器的非线性动力学模型及模型参数标定方法研究
黄德东1,2, 温晶晶1,2, 邢亮亮3, 卫国宁4, 吴斌1
1. 西北工业大学 航天学院, 陕西 西安 710072;
2. 西北工业大学 青岛研究院, 山东 青岛 266200;
3. 航天科工集团二院二部, 北京 100854;
4. 上海宇航系统工程研究所, 上海 201109
摘要:
借鉴有阻尼达芬方程、圆柱形橡胶隔振器的静刚度和冲击刚度经验公式,建立了预测半正弦波形发生器冲击波形的非线性动力学模型。该模型综合考虑了半正弦波形发生器的尺寸、硬非线性、阻尼、冲击初速度等复杂因素。结合冲击试验机和龙格库塔方法,给出了半正弦波形发生器冲击波形的测量和计算方法。以预测波形和实测波形的确定系数最小为优化目标,采用量子遗传算法对模型中的相关参数进行反辨识,同时也验证了该非线性模型针对半正弦波形发生器在冲击激励下的动力学行为的极限描述能力。结果表明,所建立的模型精度较高,其中峰值和脉宽误差均在5%以下,波形拟合误差小于15%。该模型及参数反辨识方法有助于精确地设计半正弦波形发生器。
关键词:    冲击试验    半正弦波形发生器    非线性动力学    量子遗传算法    参数反辨识   
Study on a Nonlinear Dynamic Model and Its Parameters Determination Method for Half-Sine Programmer
HUANG Dedong1,2, WEN Jingjing1,2, XING Liangliang3, WEI Guoning4, WU Bin1
1. School of Astronautics, Northwestern Polytechnical University, Xi'an 710072, China;
2. Qingdao Research Institute, Northwestern Polytechnical University, Qingdao 266200, China;
3. Beijing Institute of Electronic System Engineering, Beijing 100854, China;
4. Shanghai Aerospace System Engineering, Shanghai 201109, China
Abstract:
A nonlinear dynamic model for describing shock response of half-sine programmer in shock test is constructed, in which many important factors in half-sine programmer such as size, hard nonlinearity, damping and initial impact velocity are considered, based on the damped Duffing equation, and the empirical static stiffness and shock stiffness calculation formulas of cylindrical rubber isolator. The shock pulse of half-sine programmer is measured and calculated by using shock test machine and Runge-Kutta method. Taking the minimum determination coefficient between the calculated and the measured shock pulse as the optimization objective, the parameters in the present model are determined by using quantum genetic algorithm (QGA), and meanwhile the extreme capacity in the present model for describing the dynamic behavior of half-sine programmer under shock excitations can also be verified. Experiments were implemented with drop shock test machine. The experimental results show that the present model is precise and efficient, and the prediction errors of pulse peaks and pulse widths were all below 5%, the waveform fitting errors between the calculated and the measured pulses are all less than 15%. The present results are helpful for designing the half-sine programmer.
Key words:    shock test    half-sine programmer    nonlinear dynamics    QGA    parameters determination   
收稿日期: 2018-11-10     修回日期:
DOI: 10.1051/jnwpu/20193761085
基金项目: 西北工业大学博士论文创新基金(CX201902)、国家自然科学基金青年项目(11702224)和陕西省自然科学基金青年项目(2018JQ1062)资助
通讯作者: 温晶晶(1990-),西北工业大学博士研究生,主要从事飞行器结构设计研究。e-mail:wjj1990@mail.nwpu.edu.cn     Email:wjj1990@mail.nwpu.edu.cn
作者简介: 黄德东(1982-),西北工业大学讲师,主要从事质量特性测试技术研究。
相关功能
PDF(1969KB) Free
打印本文
把本文推荐给朋友
作者相关文章
黄德东  在本刊中的所有文章
温晶晶  在本刊中的所有文章
邢亮亮  在本刊中的所有文章
卫国宁  在本刊中的所有文章
吴斌  在本刊中的所有文章

参考文献:
[1] 张建华. 航天产品的爆炸冲击环境技术综述[J]. 导弹与航天运载技术, 2005(3):30-35 ZHANG Jianhua. Pyroshock Environment of Missiles and Launch Vehicles[J]. Missiles and Space Vehicles, 2005(3):30-35(in Chinese)
[2] PANG Z, LIU Y, LI M, et al. Influence of Process Parameter and Strain Rate on the Dynamic Compressive Properties of Selective Laser-Melted Ti-6Al-4V Alloy[J]. Applied Physics A, 2019, 125(2):90
[3] 吴斌. 气压驱动垂直冲击试验台设计[J]. 机械设计与制造,2008(4):38-40 WU Bin. Design on a Pneumatic Vertical Shock Test Apparatus[J]. Machinery Design & Manufacture, 2008(4):38-40
[4] 乔梁,鲁飞,赵庆岚. 火炮模拟试验装置波形发生器参数试验设计[J]. 火力与指挥控制,2013,38(1):166-169 QIAO Liang, LU Fei, ZHAO Qinglan. Experiment Design of Wave Generator Parameters of Gun Simulation Test Device[J]. Fire Control & Command Control, 2013, 38(1):166-169(in Chinese)
[5] WU Bin, LIU Chengwu, WEN Jingjing. The Optimized Algorithm for Working Parameters of the Vertical Impact Testing Machine[C]//IEEE 13th International Conference on Electronic Measurement & Instruments, Yangzhou, 2010:424-430
[6] 杨玉良,秦俊奇,狄长春,等. 火炮动力后坐试验台波形发生器优化设计研究[J]. 振动与冲击,2014,33(2):47-51 YANG Yuliang, QIN Junqi, DI Changchun, et al. Optimization Design on Waveform Generator of Gun-Power-Recoil Test Machine[J]. Journal of Vibration and Shock, 2014, 33(2):47-51(in Chinese)
[7] 冯国华,冯志华. 基于MATLAB的半正弦波跌落冲击试验模型分析[J]. 苏州大学学报,2007,27(6):30-33 FENG Guohua, FENG Zhihua. Half Sine Wave Shock-Exited Analysis Based on MATLAB[J]. Journal of Suzhou University, 2007, 27(6):30-33(in Chinese)
[8] 吕剑,岳晓红,黄含军. 利用数值方法模拟橡胶波形发生器生成半正弦冲击波[J]. 橡胶工业,2008,55(1):15-18 LYU Jian, YUE Xiaohong, HUANG Hanjun. Numerical Simulation for Half-Sine Pulse Generated by Rubber Waveform Generator[J]. China Rubber Industry, 2008, 55(1):15-18(in Chinese)
[9] GAO T, LIU Q P, MA J X, et al. Simulation and Experimental Research on Rubber Waveform Generator[C]//Key Engineering Materials Trans Tech Publications, 2016:536-541
[10] WEN J, LIU C, YAO H, et al. A Nonlinear Dynamic Model and Parameters Identification Method for Predicting the Shock Pulse of Rubber Waveform Generator[J]. International Journal of Impact Engineering, 2018, 120:1-15
[11] SINGIRESU S Rao. 机械振动[M]. 4版. 李欣业,张明路,译. 北京:清华大学出版社,2014 SINGIRESU S Rao. Mechanical Vibrations[J]. 4th edition. LI Xinye, ZHANG Minglu, Translate. Beijing, Tsinghua University Press, 2014(in Chinese)
[12] 陈家照,黄闽翔,王学仁,等. 几种典型的橡胶材料本构模型及其适用性[J]. 材料导报,2015(增刊1):118-120 CHEN Jiazhao, HUANG Minxiang, WANG Xueren, et al. Typical Constitutive Models of Rubber Materials and Their Ranges of Application[J]. Materials Review, 2015(suppl 1):118-120(in Chinese)
[13] JANKOWSKI R. Nonlinear Rate Dependent Model of High Damping Rubber Bearing[J]. Bulletin of Earthquake Engineering, 2003, 1(3):397-403
[14] 曾诚,华宏星. 非线性橡胶隔振器的冲击响应特性研究[J]. 噪声与振动控制,2012(4):20-24 ZENG Cheng, HUA Hongxing. Study on Shock Response Characteristics of Nonlinear Isolator[J]. Noise and Vibration Control, 2012(4):20-24(in Chinese)
[15] 张晓虹,周立汉. 振动设备的橡胶弹簧的设计研究[J]. 粮食与饲料工业,1991(5):60-64 ZHANG Xiaohong, ZHOU Lihan. Designing and Research on Rubber Spring for Vibration Equipment[J]. Cereal and Feed Industry, 1991(5):60-64(in Chinese)
[16] 高挺. 火炮发射冲击模拟波形发生器仿真与试验研究[D]. 哈尔滨:哈尔滨工业大学,2014 GAO Ting. Simulation and Experimental Research on Artillery Firing Impact Simulation Waveform Generator[D]. Harbin, Harbin Institute of Technology, 2014(in Chinese)
[17] GENT A N. Engineering with Rubber:How to Design Rubber Components[M]. Munich, Carl Hanser Verlag GmbH Co KG, 2012
[18] LEE O S, KIM K J. Dynamic Compressive Deformation Behavior of Rubber Materials[J]. Journal of Materials Science Letters, 2003, 22(16):1157-1160
[19] BACON C. Separation of Waves Propagating in an Elastic or Viscoelastic Hopkinson Pressure Bar with Three-Dimensional Effects[J]. International Journal of Impact Engineering, 1999, 22(1):55-69
[20] PAN Tsochien, YANG Guichnag. Nonlinear Analysis of Base-Isolated MDOF Structures[C]//11th World Conference on Earthquake Engineering, 1996
[21] 吕平华. 100 kg冲击试验机的设计分析与计算[J]. 工程与试验,1995(1):12-16 LYU Pinghua. Design Analysis and Calculation of 100 kg Shock Testing Machine[J]. Engineering & Test, 1995(1):12-16(in Chinese)
[22] 史峰,王辉,郁磊,等. MATLAB智能算法30个案例分析[M]. 北京:北京航空航天大学出版社,2011 SHI Feng, WANG Hui, YU Lei, et al. Thirty Case Analysis of MATLAB Intelligent Algorithm[M]. Beijing, Beihang University Press, 2011(in Chinese)
[23] 管月英,孙伟星,张惠民,等. 非线性隔离器冲击刚度特性设计及试验方法研究[C]//工程与振动科技论坛,上海,2005 GUAN Yueying, SUN Weixing, ZHANG Huimin, et al. Research on Shock Rigidity Characteristics Designing and Testing Method of Non-Linear Isolators[C]//Engineering and Vibration Forum, Shanghai, 2005(in Chinese)
[24] TANG Z Y, WU G, LU J Y, et al. Application of Variable Damping Hydraulic Buffer in Braking Large Mass Impact Loading Problem[C]//Applied Mechanics and Materials, 2015:619-622
[25] 赵清望. 冲击试验机的基本参数理论计算[J]. 振动与冲击,1991(2):1-6 ZHAO Qingwang. Theoretical Calculation of the Basic Parameters of the Shock Test Machine[J]. Journal of Vibration and Shock, 1991(2):1-6(in Chinese)