论文:2019,Vol:37,Issue(5):928-934
引用本文:
吴翰, 王正平, 周洲, 王睿. 多旋翼固定翼无人机多体动力学建模[J]. 西北工业大学学报
WU Han, WANG Zhengping, ZHOU Zhou, WANG Rui. Modeling and Simulation for Multi-Rotor Fixed-Wing UAV Based on Multibody Dynamics[J]. Northwestern polytechnical university

多旋翼固定翼无人机多体动力学建模
吴翰, 王正平, 周洲, 王睿
西北工业大学 航空学院, 陕西 西安 710072
摘要:
精确的动力学模型将为无人机的设计与控制提供指导。对多旋翼固定翼无人机进行动力学建模,基于多体动力学思路将其划分为机翼、机体、多旋翼、垂尾、平尾和舵面的多刚体系统,分别针对每个刚体进行动力学建模,通过虚功形式将各刚体质心处的力和力矩导入第二类拉格朗日方程,选取四元数作为广义坐标,引入拉格朗日乘子推导并建立该无人机动力学模型,最终通过数值仿真与实验结果对比表明该动力学模型能够准确反映无人机动态变化过程,为该无人机的控制提供指导。
关键词:    多体动力学    拉格朗日方程    四元数    拉格朗日乘子    动力学模型   
Modeling and Simulation for Multi-Rotor Fixed-Wing UAV Based on Multibody Dynamics
WU Han, WANG Zhengping, ZHOU Zhou, WANG Rui
School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
Accurate dynamic modeling lays foundation for design and control of UAV. The dynamic model for the multi-rotor fixed-wing UAV was looked into and it was divided into fuselage, air-body, multi-rotors, vertical fin, vertical tail and control surfaces, based on the multibody dynamics. The force and moment model for each body was established and derived into the Lagrange equation of the second king by virtual work. By electing quaternion as generalized coordinate and introducing Lagrangian multiplier, the dynamic modeling was deduced and established. Finally, the comparison between the simulation results and the experimental can be found that the present dynamic model accurately describes the process of dynamic change of this UAV and lay foundation for the control of UAV.
Key words:    multibody dynamics    Lagrange equation    quaternion    Lagrangian multiplier    dynamics modeling   
收稿日期: 2018-08-27     修回日期:
DOI: 10.1051/jnwpu/20193750928
通讯作者:     Email:
作者简介: 吴翰(1996-),西北工业大学硕士研究生,主要从事飞行器总体设计、多体动力学建模研究。
相关功能
PDF(1643KB) Free
打印本文
把本文推荐给朋友
作者相关文章
吴翰  在本刊中的所有文章
王正平  在本刊中的所有文章
周洲  在本刊中的所有文章
王睿  在本刊中的所有文章

参考文献:
[1] KIM S K, TILBURY D M. Mathematical Modeling and Experimental Identification of a Model Helicopter[C]//American Institute of Aeronautics and Astronautics, 1998, 203-213
[2] FERGUSON S W. A Mathetical Model for Real Time Flight Simulation of a Generic Tilt-Rotor Aircraft[R]. NASA-CR-166536, 1988
[3] 李家乐,王正平. 基于Lagrange方法的单旋翼飞行动力学建模[J]. 飞行力学, 2016, 34(4):15-18 LI Jiale, WANG Zhengping. Dynamics Modeling for Monowing Rotorcraft Using Lagrange Method[J]. Flight Dynamics, 2016, 34(4):15-18(in Chinese)
[4] HOGAN F R, FORBES J R. Modeling of Spherical Robots Rolling on Generic Surfaces[J]. Multibody System Dynamics, 2015, 35(1):91-109
[5] ZHAO Zhenjun, REN Gexue. Multibody Dynamic Approach of Flight Dynamics and Nonlinear Aeroelasticity of Flexible Aircraft[J]. AIAA Journal, 2011, 49(1):41-53
[6] KURDILA A J, MENON R G. Nonrecursive Order N Formulation of Multibody Dynamics[J]. AIAA Journal of Guidance, Control, and Dynamics, 1993, 16(5):838-843
[7] TARN T J, SHOULTS G A, YAHG S P. A Dynamic Model of Underwater Vehicle with a Robotics Manipulator Using Kane's Method[J]. Autonomous Robotics, 1996, 3:269-283
[8] CHANG Lubin, HU Baiqing, CHANG Guobin. Modified Unscented Quaternion Estimator Based on Quaternion Averaging[J]. AIAA Journal of Guidance, Control, and Dynamics, 2014, 37(1):305-308
[9] BECKWITH R M, BABINSKY H. Impulsively Started Flat Plate Flow[J]. Journal of Aircraft, 2009, 46(6):2186-2188
相关文献:
1.柳子栋, 詹浩, 邓阳平.复杂环境下运输类飞机拦阻着舰建模与动力学特性分析[J]. 西北工业大学学报, 2013,31(5): 816-823