论文:2019,Vol:37,Issue(5):918-927
引用本文:
樊华羽, 詹浩, 程诗信, 米百刚. 基于EHVI加点准则的DSI进气道气动/隐身多目标代理优化方法研究[J]. 西北工业大学学报
FAN Huayu, ZHAN Hao, CHENG Shixin, MI Baigang. Aerodynamic and Stealth Integrated Design of DSI Inlet by Surrogate-Based Multi-Objective Optimization with EHVI Infill Criterion[J]. Northwestern polytechnical university

基于EHVI加点准则的DSI进气道气动/隐身多目标代理优化方法研究
樊华羽1, 詹浩1, 程诗信1, 米百刚2
1. 西北工业大学 航空学院, 陕西 西安 710072;
2. 清华大学 航天航空学院, 北京 100084
摘要:
针对无附面层隔道超声速进气道(DSI)气动隐身多目标优化设计问题,以DSI进气道三维鼓包压缩面(bump)为设计对象,开展DSI的气动、隐身多目标优化设计研究。采用自由曲面变形(FFD)方法实现DSI进气道bump面的参数化表达;分别采用基于雷诺平均N-S方程的计算流体力学方法(CFD)及大面元物理光学法(LEPO)配合一致性几何绕射理论(UTD)计算边缘绕射场的RCS分析方法计算DSI进气道的气动、隐身性能;选择结合基于动态超体积期望改善(EHVI)加点的动态Kriging代理模型与ASMOPSO算法的高效多目标粒子群算法对DSI进气道进行综合寻优设计研究。在较少的调用真实目标函数的情况下,获得了比较优秀的Pareto前沿,通过对所选解的分析比较可知优化后的DSI进气道在气动及隐身方面均优于原始构型。
关键词:    DSI进气道    EHVI加点    ASMOPSO优化算法    气动隐身多目标优化   
Aerodynamic and Stealth Integrated Design of DSI Inlet by Surrogate-Based Multi-Objective Optimization with EHVI Infill Criterion
FAN Huayu1, ZHAN Hao1, CHENG Shixin1, MI Baigang2
1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
2. School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
Abstract:
To deal with the problem of aerodynamic and stealth integrated optimization of DSI inlet,a multi-objective optimization study on aerodynamic and stealth of the DSI inlet is carry out which based on the deformation of the three-dimensional compression bump surface. The FFD parametric method is used to parameterize the bump surface; CFD calculation based on RANS equations is used to analyze the aerodynamic performance of the DSI inlet, large element physical optical method and uniform theory of diffraction are used to calculate RCS of the DSI inlet; And ASMOPSO algorithm with the Kriging surrogate model which based on the expect hyper-volume improvement infill criterion is adopted for integrated optimization design. The results of DSI inlet aerodynamic and stealth integrated optimization exhibit considerable improvement.
Key words:    DSI inlet    expect hyper-volume improvement (EHVI)    ASMOPSO algorithm    aerodynamic and stealth integrated optimization    Kriging surrogate model   
收稿日期: 2018-10-20     修回日期:
DOI: 10.1051/jnwpu/20193750918
通讯作者:     Email:
作者简介: 樊华羽(1985-),西北工业大学博士研究生,主要从事飞行器空气动力及隐身优化研究。
相关功能
PDF(2393KB) Free
打印本文
把本文推荐给朋友
作者相关文章
樊华羽  在本刊中的所有文章
詹浩  在本刊中的所有文章
程诗信  在本刊中的所有文章
米百刚  在本刊中的所有文章

参考文献:
[1] KIM S D. Aerodynamic Design of a Supersonic Inlet with a Parametric Bump[J]. Journal of Aircraft, 2009, 46(1):198-203
[2] LIM S, KOH D H, KIM S D, et al. A Computational Study on the Efficiency of Boundary Layer Bleeding for the Supersonic Bump Type Inlet[C]//47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2009:5-8
[3] GAIDDON A, KNIGHT D D. Multicriteria Design Optimization of Integrated Three-Dimensional Supersonic Inlets[J]. Journal of Propulsion and Power, 2003, 19(3):456-463
[4] ZHANG Z K, LUM K Y. S-Shaped Inlet Design Optimization Using the Adjoint Equation Method[R]. AIAA-2006-4453
[5] LEE C H, AHN J K, BAE H G, et al. Efficient Global Optimization Incorporating Feasibility Criterion for the Design of a Supersonic Inlet[J]. Journal of Aerospace Engineering, 2012, 226(11):1362-1372
[6] KIM H, LIOU M S. Shape Design Optimization of Embedded Engine Inlets for N2B Hybrid Wing-Body Configuration[J]. Aerospace Science and Technology, 2013, 30:128-149
[7] GAN W, ZHANG X. Design Optimization of a Three-Dimensional Diffusing S-Duct Using a Modified SST Turbulent Model[J]. Aerospace Science and Technology, 2017, 63(4):63-78
[8] 张鹏飞, 龚书喜, 徐云学, et al. 电大尺寸开口腔体的RCS计算和控制[J]. 西安电子科技大学学报, 2009, 36(1):111-115 ZHANG Pengfei, GONG Shuxi, XU Xueyun, et al. Computation and Control of RCS for Large Open-Ended Cavities[J]. Journal of Xidian University, 2009, 36(1):111-115(in Chinese)
[9] 郭文彦, 朱颜镇. 飞机进气道的高频电磁散射特性及RCS计算[J]. 哈尔滨工业大学学报, 1999(1):123-126 GUO Wenyan, ZHU Yanzhen. HF Electromagnetic Scattering Properties and RCS Calculation of the Airplane's Inlet[J]. Journal of Harbin Institute of Technology, 1999(1):123-126(in Chinese)
[10] COELLO C A C, LECHUGA M S. MOPSO:A Proposal for Multiple Objective Particle Swarm Optimization[C]//Proceedings of the IEEE Congress on Evolutionary Computation, 2002:1051-1056
[11] RAQUEL C R, NAVAL P C. An Effective Use of Crowding Distance in Multi-Objective Particle Swarm Optimization[C]//Proceedings of the Workshops on Genetic and Evolutionary Computation, 2005:257-264
[12] DEB K, PRATAP A, AGARWAL S, et al. A Fast and Elitist Multi-Objective Genetic Algorithm:NSGA-Ⅱ[J]. IEEE Trans on Evolutionary Computation, 2002, 6(2):182-197
[13] WERON A, WERON R. Computer Simulation of Levy-α Stable Variables and Processes[M]. Springer Berlin Heidelberg, 1995:379-392
[14] KOGON S M, MANOLAKIS D G. Signal Modeling with Self-Similarα Stable Processes:the Fractional Levy Stable Motion Model[J]. IEEE Trans on Signal Processing, 1996, 44(4):1006-1010
[15] 樊华羽, 詹浩, 程诗信,等. 基于α-stable分布的多目标粒子群算法研究及应用[J]. 西北工业大学学报, 2019, 37(2):232-241 FAN Huayu, ZHAN Hao, CHENG Shixin, et al. Research and Application of Multi-Objective Particle Swarm Optimization Algorithm Based on α-Stable Distribution[J]. Journal of Northwestern Polytechnical University, 2019., 37(2):232-241(in Chinese)
[16] EMMERICH M, GIANNAKOGLOU K, NAUJOKS B. Single-and Multi-Objective Evolutionary Optimization Assisted by Gaussian Random Field Metamodels[J]. IEEE Trans on Evolutionary Computation, 2006, 10(4):421-439
[17] EMMERICH M, DEUTZ A H, KLINKENBERG J W. Hypervolume-Based Expected Improvement:Monotonicity Properties and Exact Computation[C]//IEEE Congress on Evolutionary Computation, 2011:2147-2154
[18] ZITZLER E. Evolutionary Algorithms for Multiobjective Optimization[M]. Switzerland, Zurich, Swiss Federal Institute of Technology, 1998
[19] JONES D R, SCHONLAU M, WELCH W J. Efficient Global Optimization of Expensive Black-Box Functions[J]. Journal of Global Optimization, 1998, 13:455-492
[20] CHENG Shixin, ZHAN Hao, SHU Zhaoxin, et al. Effective Optimization on Bump Inlet Using Meta-Model Multi-Objective Particle Swarm Assisted by Expected Hyper-Volume Improvement[J]. Aerospace Science and Technology, 2019, 87:431-447
[21] CHENG S X, ZHAN H, SHU Z X. An Innovative Hybrid Multi-Objective Particle Swarm Optimization with or without Constraints Handling[J]. Applied Soft Computing, 2016, 47:370-388
[22] MENTER F R. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications[J]. AIAA Journal, 1994, 32(8):1598-1605
[23] 王旭, 宋笔锋, 郭晓辉. 飞行器被雷达发现概率的计算方法研究[J]. 系统工程理论与实践, 2006, 26(6):130-134 WANG Xu, SONG Bifeng, GUO Xiaohui. Research on the Approach for Calculating the Probability of Detecting an Aircraft by Radar System[J]. Systems Engineering-Theory & Practice (in Chinese)
[24] 张考, 马东立. 军用飞机生存力与隐身设计[M]. 北京:国防工业出版社, 2002 ZHANG Kao, MA Dongli. Military Aircraft Survivability and Stealt Design[M]. Beijing, National Defense Industry Press, 2002(in Chinese)
[25] MORRIS M D, MITCHELL T J. Exploratory Designs for Computer Experiments[J]. Journal of Statistical Planning and Inference, 1995, 43(3):381-402