论文:2019,Vol:37,Issue(4):744-750
引用本文:
刘红彬, 陈伟, 刘林. 某轮盘螺栓孔处疲劳寿命预测方法与验证[J]. 西北工业大学学报
LIU Hongbin, CHEN Wei, LIU Lin. Prediction Method and Verification of Fatigue Life for a Turbine Disk with Bolt Hole[J]. Northwestern polytechnical university

某轮盘螺栓孔处疲劳寿命预测方法与验证
刘红彬1,2, 陈伟1, 刘林2
1. 南京航空航天大学 能源与动力学院, 江苏 南京 210016;
2. 中国航发四川燃气涡轮研究院, 四川 成都 610500
摘要:
为提高航空发动机FGH96材料涡轮盘在较高应力梯度缺口处如螺栓孔处的疲劳寿命预测精度,通过使用新的平均应力公式,同时考虑应力梯度和尺寸效应的影响,通过FGH96材料级间盘模拟试验件疲劳试验,对模型所需的寿命预测方程中的参数进行拟合,进一步开展FGH96材料涡轮盘螺栓孔模拟件疲劳试验,与预测结果进行了比较,结果表明,改进后的疲劳构件寿命预测方法具有较高的精度,证明了该方法的有效性。
关键词:    FGH96    涡轮盘    螺栓孔    平均应力    参数拟合    寿命预测    疲劳试验    模拟   
Prediction Method and Verification of Fatigue Life for a Turbine Disk with Bolt Hole
LIU Hongbin1,2, CHEN Wei1, LIU Lin2
1. School of Energy and Power, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
2. AECC Sichuan Gas Turbine Establishment, Chengdu 610500, China
Abstract:
In order to improve the fatigue life prediction accuracy of FGH96 material for turbine engine at higher stress gradient notch, such as bolt holes, the new mean stress formula is used in this paper, the effect of stress gradient and size effect are considered at the same time, Fatigue test of FGH96 material inter-stage disc simulation test piece is done, and the parameters in the life prediction equation of the model are fitted. Further study on fatigue test of FGH96 material turbine pin bolt hole simulation unit is done, and test results is compared with the forecast results. The result shows that, the improved fatigue life prediction method has higher accuracy, and the validity of the method is proved.
Key words:    FGH96 material    turbine disk    bolt hole    average stress    parameter fitting    life prediction    fatigue test    simulation   
收稿日期: 2018-08-14     修回日期:
DOI: 10.1051/jnwpu/20193740744
通讯作者:     Email:
作者简介: 刘红彬(1977-),南京航空航天大学博士研究生,主要从事航空发动机强度设计与试验研究。
相关功能
PDF(1363KB) Free
打印本文
把本文推荐给朋友
作者相关文章
刘红彬  在本刊中的所有文章
陈伟  在本刊中的所有文章
刘林  在本刊中的所有文章

参考文献:
[1] 张国栋,何玉怀,苏彬. 粉末高温合金FGH95和FGH96的热机械疲劳性能[J]. 航空材料学报,2011, 31(6):96 ZHANG Guodong, HE Yuhuai, SU Bin. Thermo Mechanical Fatigue Properties of Powder Metallurgy Superalloy FGH95 and FGH96[J]. Journal of Aeronautical Materials, 2011, 31(6):96(in Chinese)
[2] SIEBEL E, STIELER M. Significance of Dissimilar Stress Distributions for Cycling Loading[J]. VDI-Z 1955, 97(5):121-126
[3] FILIPPINI M. Stress Gradient Calculations at Notches[J]. International Journal of Fatigue, 2000, 22(5):397-409
[4] 姚卫星. 结构疲劳寿命分析[M]. 北京:国防工业出版社, 2002 YAO Weixing. Fatigue Life Analysis of Structures[M]. Beijing, National Defense Industry Press, 2002(in Chinese)
[5] BENTACHFINEA S, PLUVINAGE G, GILGERT J, et al. Notch Effect in Low Cycle Fatigue[J]. International Journal of Fatigue, 1999, 21:421-430
[6] TANAKA K. Engineering Formulae for Fatigue Strength Reduction Due to Crack-Like Notches[J]. International Journal of Fracture,1983, 22(2):39-46
[7] TAYLOR D. Geometrical Effects in Fatigue:a Unifying Theoretical Model[J]. International Journal of Fatigue, 1999, 21(5):413-420
[8] SUN Songsong, YU Xiaoli, LIU Zhentao, et al. Component HCF Research Based on the Theory of Critical Distance and a Relative Stress Gradient Modification, Component Fatigue Limit Load Prediction[J]. PLoS One, 2016, 11(12):0167722
[9] WANG J L, WEI D S, WANG Y R, et al. High-Temperature LCF Life Estimation Based on Stress Gradient Effect of Notched GH4169 Alloy Specimens[J]. Fatigue Fracture of Engineering Materialsd & Structures, 2017, 40:1640-1651
[10] SUSMEL L. A Unifying Approach to Estimate the High-Cycle Fatigue Strength of Notched Components Subjected to Both Uniaxial and Multiaxial Cyclic Loadings[J]. Fatigue and Fracture of Engineering Materials and Structures, 2004, 27(5):391-411
[11] Susmel L, Taylor D. Can the Conventional High-Cycle Multiaxial Fatigue Criteria be Reinterpreted in Terms of the Theory of Critical Distances[J]. Structural Durability & Health Monitoring, 2006, 2(2):115-129
[12] SUSMEL L. The Theory of Criticsl Distances:a Review of Its Applications in Fatigue[J]. Engineering Fracture Mechanics, 2008, 75(7):1706-1724
[13] 王延荣,李宏新,袁善虎,等. 考虑应力梯度的缺口疲劳寿命预测方法[J]. 航空动力学报,2013,28(6):1208-1214 WANG Yanrong, LI Hongxin, YUAN Shanhu. Mothod for Notched Fatigue Life Prediction with Stress Gradien[J]. Journal of Aeronautical Power, 2013, 28(6):1208-1214(in Chinese)
[14] MORROW J D. Cyclic Plastic Strain Energy and Fatigue of Metals[EB/OL]. (1965-08-12)[2018-06-05]. https://doi.org/10.1520/STP43764S
[15] MORROW J D. Fatigue Design Handbook Section 3.2[M]. USA, SAE Advances in Engineering, Society for Automotive Engineers, 1968:21-29
[16] SMITH K N, WATSON P, TOPPER T H. A Stress-Strain Function for the Fatigue of Metals[J]. Journal of Materials, 1970, 5(4):767-778
[17] WALKER K. The Effect of Stress Ratio During Crack Propagation and Fatigue for 2024-T3 and 7075-T6 Aluminum[EB/OL]. (1970-03-02)[2018-06-05]. https://doi.org/10.1520/STP32032S
[18] 袁善虎, 魏大盛, 王延荣. FGH97缺口试样基于粘塑性本构的弹塑性响应分析[J]. 航空动力学报, 2012, 27(10):2348-2355 YUAN Shanhu, WEI Dasheng, WANG Yanrong. Analysis of Elastoplastic in FGH97 Notched Specimens Based on Visco Plastic Constitutive Model[J]. Journal of Aeronautical Power, 2012, 27(10):2348-2355
[19] 马鸣图,齐显新. 回火硬度对新型中碳弹簧钢应变疲劳特性的影响[J]. 河南科学, 1993(1):39-52 MA Mingtu, QI Xianxin. Effect of Tempering Hardness on Strain Fatigue Properties of New Medium Carbon Spring Steel[J]. Henan Science, 1993(1):39-52(in Chinese)
[20] 刘香,王延荣,田爱梅,等. 考虑尺寸效应的缺口疲劳寿命预测方法[J]. 航空动力学报, 2017, 32(2):429-437 LIU Xiang, WANG Yanrong,TIAN Aimei, et al. Notch Fatigue Life Prediction Method Considering Size Effect[J]. Journal of Aeronautical Power, 2017, 32(2):429-437(in Chinese)
[21] 魏芷峰,王延荣,袁善虎,等. 涡轮盘低循环疲劳寿命预测方法与流程[J]. 燃气涡轮试验与研究, 2014(5):25-29 WEI Zhifeng, WANG Yanrong, YUAN Shanhu, et al. Prediction Method and Process of Low Cycle Fatigue Life for Turbine Disk[J]. Gas Turbine Experiment and Research, 2014(5):25-29(in Chinese)