论文:2019,Vol:37,Issue(4):724-729
引用本文:
刁爱民, 程广利, 王泽明. 气枪声源激发的浅海地震波频散特性研究[J]. 西北工业大学学报
DIAO Aimin, CHENG Guangli, WANG Zeming. On the Dispersive Characteristics of Shallow Water Seismic Waves Excited by Air Gun Sound Source in Shallow Water[J]. Northwestern polytechnical university

气枪声源激发的浅海地震波频散特性研究
刁爱民1, 程广利2, 王泽明2,3
1. 海军工程大学 船舶与海洋学院, 湖北 武汉 430033;
2. 海军工程大学 电子工程学院, 湖北 武汉 430033;
3. 南部战区海军参谋部, 广东 湛江 524000
摘要:
为了研究由浅海中声源激发的海底地震波主要波动成分的频散特性,首先基于波动方程对液-固界面处的声场进行了推导,证明纵波和横波不具有频散特性,而表面波具有正常频散特性。随后基于高阶交错网格有限差分法,对气枪声源激发的液-固界面处的声场进行了数值仿真,通过分析仿真数据观察到表面波的频散现象,验证了理论分析结果;最后基于τ-p变换对海试数据处理与分析,精细提取了海底表面波的频散曲线。
关键词:    气枪声源    浅海地震波    频散    表面波    τ-p变换法   
On the Dispersive Characteristics of Shallow Water Seismic Waves Excited by Air Gun Sound Source in Shallow Water
DIAO Aimin1, CHENG Guangli2, WANG Zeming2,3
1. College of Naval Architecture and Ocean Engineering, Naval University of Engineering, Wuhan 430033, China;
2. College of Electronic Engineering, Naval University of Engineering, Wuhan 430033, China;
3. Navy Staff Office of Southern Theater Command, Zhanjiang 524000, China
Abstract:
In order to study the dispersion characteristics of seabed seismic waves excited by acoustic sources in shallow water, the sound field at liquid-solid interface is derived based on the wave equation firstly, which results demonstrate that the longitudinal wave and transversal wave are not dispersive, while the Scholte wave is normal dispersive. Then, the numerical simulation is carried out on the sound field at the liquid-solid interface excited by the air gun sound source based on high-order staggered grid finite difference method, which results demonstrate that the dispersion phenomenon of Scholte waves is observed and the theoretical analysis results were verified. Finally, the data of experiment in the sea are analyzed based on the transformation, and the dispersion curve of Scholte wave is finely extracted.
Key words:    air gun sound source    seismic waves in the shallow water    dispersion    scholte wave    transformation method   
收稿日期: 2018-09-02     修回日期:
DOI: 10.1051/jnwpu/20193740724
基金项目: 国防科技创新特区项目支持(ZT-001-002-10)资助
通讯作者: 程广利(1976-),海军工程大学教授,主要从事水声工程研究。E-mail:sonarcgl@126.com     Email:sonarcgl@126.com
作者简介: 刁爱民(1966-),海军工程大学教授、硕士生导师,主要从事海洋工程研究。
相关功能
PDF(1577KB) Free
打印本文
把本文推荐给朋友
作者相关文章
刁爱民  在本刊中的所有文章
程广利  在本刊中的所有文章
王泽明  在本刊中的所有文章

参考文献:
[1] 卢再华,张志宏,顾建农. 舰船海底地震波形成机理的理论分析[J]. 应用力学学报,2007,24(1):54-57 LU Zaihua, ZHANG Zhihong, GU Jiannong. Theoretical Analysis to Mechanism of Seafloor Seismic Wave Induced by Sailing Vessel[J]. Chinese Journal of Applied Mechanics, 2007, 24(1):54-57(in Chinese)
[2] 王泽明. 气枪声源激发的海底表面波特性研究[D]. 武汉:海军工程大学,2018 WANG Zeming. Study on Characteristics of Seabed Scholte Wave Motivate by Air Gun Source[D]. Wuhan, Naval University of Engineering, 2018(in Chinese)
[3] 潘冬明. 瑞雷面波频散分析与应用[D]. 徐州:中国矿业大学, 2009 PAN Dongming. Dispesion Analysis of Rayleigh Scholte Waves and Applications[D]. Xuzhou, China University of Mining and Technology, 2009(in Chinese)
[4] 时福荣. 互相关分析计算瑞雷波传播速度的原理和方法[J]. 物探化探计算技术,1990,12(4):357-360 SHI Furong. Principle and Method of Calculation of Rayleigh Wave Propagation Velocity by Cross correlation Analysis[J]. Computing Techniques for Geophysical and Geochemical Exploration, 1990, 12(4):357-360(in Chinese)
[5] 郑成龙,王宝善. S变换在地震资料处理中的应用与展望[J]. 地球物理学进展,2015,30(4):1580-1591 ZHENG Chenglong, WANG Baoshan. Applications of Transform in Seismic Data Processing[J]. Progress in Geophysis, 2015,30(4):1580-1591(in Chinese)
[6] 吴律. τ-p变换及应用[M]. 北京:石油工业出版社,1993 WU Lü. τ-p Transformation and Application[M]. Beijing, Petroleum Industry Press,1993(in Chinese)
[7] 孙成禹. 地震波理论与方法[M]. 青岛:中国石油大学出版社,2007 SUN Chengyu. Theory and Methods of Seismic Wave[M]. Qingdao, China University of Petroleum Press (in Chinese)
[8] 张海刚. 浅海甚低频声传播建模与规律研究[D]. 哈尔滨.哈尔滨工程大学,2010 ZHANG Haigang. Research on Modeling and Rule of Infrasound Propagation in Shallow Sea[D]. Harbin, Harbin Engineering University, 2010(in Chinese)
[9] LI C X, DICK K P Y. A Fast Multi-Layer Boundary Element Method for Direct Numerical Simulation of Sound Propagation in Shallow Water Environments[J]. Journal of Computational Physics, 2019, 392(1):694-712
[10] LI C X. Numerical Investigation of a Hybrid Wave Absorption Method in 3D Numerical Wave Tank[J]. CMES-Computer Modeling in Engineering & Sciences, 2015, 107(2):125-153
[11] Jennifer L G. An Inversion Scheme for Shear Wave Speed Using Scholte Wave Dispersion[D]. Rhode Island, University of Rhode Island