论文:2019,Vol:37,Issue(4):697-703
引用本文:
陈克安, 胥健, 王磊, 周兵. 基于声场分解和稀疏正则化的二维空间次级声源布局优化[J]. 西北工业大学学报
CHEN Kean, XU Jian, WANG Lei, ZHOU Bing. Optimization of Secondary Sources Configuration in Two-Dimensional Space Based on Sound Field Decomposition and Sparsity-Inducing Regularization[J]. Northwestern polytechnical university

基于声场分解和稀疏正则化的二维空间次级声源布局优化
陈克安1,2,3, 胥健2,3, 王磊2,3, 周兵1
1. 中国电力科学研究院有限公司 电网环境保护国家重点实验室, 湖北 武汉 430074;
2. 西北工业大学 航海学院, 陕西 西安 710072;
3. 海洋声学信息感知工信部重点实验室(西北工业大学), 陕西 西安 710072
摘要:
在有源噪声控制系统电声器件布局设计中,目前的优化方法需要预先确定误差传感器的布局,这样大大增加了后续次级声源布局优化的工作量。利用高阶传声器拾取声场信息,在波域构造有源控制代价函数,从而解除了对误差传感器布局信息的需求。在此基础上,根据初级声场的稀疏特性,引入稀疏正则化方法,通过求解欠定方程的稀疏近似解,实现了次级声源布局(个数和空间位置)优化。讨论了备选次级声源个数对优化结果的影响,并与均匀布局和遗传算法优化布局结果进行了比较。结果表明,所提方法在不依赖于误差传感器布局信息的情况下可以有效地优化次级声源布局,降噪效果与遗传算法布局结果相近,其他系统评价指标明显更优,有利于有源系统的稳定运行。
关键词:    有源噪声控制    次级声源布局    声场分解    稀疏正则化   
Optimization of Secondary Sources Configuration in Two-Dimensional Space Based on Sound Field Decomposition and Sparsity-Inducing Regularization
CHEN Kean1,2,3, XU Jian2,3, WANG Lei2,3, ZHOU Bing1
1. State Key Laboratory of Power Grid Environmental Protection, China Electric Power Research Institute, Wuhan 430074, China;
2. School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China;
3. Key Laboratory of Ocean Acoustics and Sensing(Northwestern Polytechnical University), Ministry of Industry and Information Technology, Xi'an 710072, China
Abstract:
During the design of transducers configuration for an active noise control system, current optimization methods need to predetermine the error sensors configuration, which significantly increases the workload of later optimization of the secondary sources configuration. In this study, a new method free from specific error sensors configuration information is presented that higher order microphones are used to capture the sound field so as to formulate the cost function in wave domain. In addition, according to sparsity characteristics of the primary sound field, sparsity-inducing regularization is introduced to optimize the secondary sources configuration, including the number and positions, by calculating a sparse approximate solution to underdetermined equations. Effects of the number of candidate secondary sources are discussed, and the comparison with the uniform configuration and the optimized configuration using the genetic algorithm is performed. Results show that the proposed method can optimize the secondary sources configuration effectively independent of the error sensors configuration information. The noise reduction of the proposed method is close to that by the genetic algorithm, while other evaluation metrics for the system are much better, which would benefit the stability of active noise control system.
Key words:    active noise control    secondary sources configuration    optimization    sound field decomposition    sparsity-inducing regularization    algorithms   
收稿日期: 2018-09-03     修回日期:
DOI: 10.1051/jnwpu/20193740697
基金项目: 电网环境保护国家重点实验室开放基金和中央财政专项基金(MJ-2015-F-044)资助
通讯作者:     Email:
作者简介: 陈克安(1965-),西北工业大学教授,主要从事噪声控制研究。
相关功能
PDF(1997KB) Free
打印本文
把本文推荐给朋友
作者相关文章
陈克安  在本刊中的所有文章
胥健  在本刊中的所有文章
王磊  在本刊中的所有文章
周兵  在本刊中的所有文章

参考文献:
[1] 陈克安. 有源噪声控制[M].2版. 北京:国防工业出版社, 2014 CHEN Kean. Active Noise Control[M]. 2nd ed. Beijing, National Defense Indeustny Press, 2014(in Chinese)
[2] ZHANG J, ABHAYAPALA T D, ZHANG W, et al. Active Noise Control over Space:a Wave Domain Approach[J]. IEEE Trans on Audio, Speech, and Language Processing, 2018, 26(4):774-786
[3] BAEK K, ELLIOTT S. Natural Algorithms for Choosing Source Locations in Active Control Systems[J]. Journal of Sound and Vibration, 1995, 186(2):245-267
[4] ASANO F, SUZUKI Y, SWANSON D. Optimization of Control Source Configuration in Active Control Systems Using Gram-Schmidt Orthogonalization[J]. IEEE Trans on Speech and Audio Processing, 1999, 7(2):213-220
[5] KHALILIAN H, BAJIĈ I, VAUGHAN R. Towards Optimal Loudspeaker Placement for Sound Field Reproduction[C]//Proc IEEE International Conference on Acoustics, Speech and Signal Processing, 2013:321-325
[6] LILIS G, ANGELOSANTE D, GIANNAKIS G. Sound Field Reproduction Using the Lasso[J]. IEEE Trans on Audio, Speech, and Language Processing, 2010, 18(8):1902-1912
[7] GAUTHIER P A, LECOMTE P, BERRY A. Source Sparsity Control of Sound Field Reproduction Using the Elastic-Net and the Lasso Minimizers[J]. Journal of the Acoustical Society of America, 2017, 141(4):2315-2326
[8] SAMARASINGHE P N, ABHAYAPALA T D, POLETTI, M. Wavefield Analysis over Large Areas Using Distributed Higher Order Microphones[J]. IEEE Trans on Audio, Speech, and Language Processing, 2014, 22(3):647-658
[9] ZHANG W, ABHAYAPALA T D, BETLEHEM T, et al. Analysis and Control of Multi-Zone Sound Field Reproduction Using Modal-Domain Approach[J]. Journal of the Acoustical Society of America, 2016, 140(3):2134-2144
[10] BETLEHEM T, ABHAYAPALA T D. Theory and Design of Sound Field Reproduction in Reverberant Rooms[J]. Journal of the Acoustical Society of America, 2005, 117(1):2100-2111
[11] BACH F, JENATTON R, MAIRAL J, et al. Optimization with Sparsity-Inducing Penalties[J]. Foundations and Trends in Machine Learning, 2012, 4(1):1-106