论文:2019,Vol:37,Issue(4):643-649
引用本文:
杜永, 马玉娥, 苟磊, 郭超, 李博, 李钢. 激光强化后7050凹槽铝板的残余应力分布规律研究[J]. 西北工业大学学报
DU Yong, MA Yu'e, GOU Lei, GUO Chao, LI Bo, LI Gang. Study on Residual Stress Distribution of 7050 Aluminum Sheet with Groove after Laser Shock Peening[J]. Northwestern polytechnical university

激光强化后7050凹槽铝板的残余应力分布规律研究
杜永1, 马玉娥1, 苟磊1, 郭超2, 李博2, 李钢2
1. 西北工业大学 航空学院, 陕西 西安 710072;
2. 航空工业第一飞机设计研究院, 陕西 西安 710089
摘要:
为了研究激光冲击强化后7050-T7451凹槽铝板残余应力场分布,测量了冲击后凹槽的残余应力分布规律:从凹槽中心到凹槽边缘,残余应力逐渐减小;在凹槽边缘底边处取最小值;然后沿凹槽边缘上升而增大,表面残余应力在凹槽曲面底边处取到最小值。采用ABAQUS有限元软件建立凹槽铝板的三维有限元模型,利用VDLOAD子程序施加载荷,进行数值分析得到了激光喷丸后残余应力分布并与试验测量结果对比,符合较好;然后研究了不同激光参数对凹槽铝板残余应力场的影响规律。结果表明:随着激光功率密度从0.84 GW/cm2增加到5.29 GW/cm2,残余应力先减小后增加,激光功率密度为3.06 GW/cm2时达到最小值-230 MPa;随着光斑直径从4 mm增加到6 mm,残余应力由-214 MPa增加至-30 MPa;随着激光脉宽从10 ns增加到40 ns,残余应力由-21 MPa减小至-288 MPa,残余压应力层深度逐渐增加;表面残余应力的最小值在凹槽曲面处取得。
关键词:    激光强化    7050-T7451铝板    凹槽    残余应力    激光强化参数   
Study on Residual Stress Distribution of 7050 Aluminum Sheet with Groove after Laser Shock Peening
DU Yong1, MA Yu'e1, GOU Lei1, GUO Chao2, LI Bo2, LI Gang2
1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
2. AVIC The First Aircraft Institute, Xi'an 710089, China
Abstract:
In order to study the residual stress profile of 7050-T7451 aluminum sheet with groove after laser shock peening (LSP), the residual stress distribution was measured. It is shown that the residual stress decreases gradually from the center to the edge of groove; and then there is the minimum value at the edge of the groove bottom surface. By using ABAQUS software to establish three-dimensional finite element model for 7050 aluminum sheet with groove, and the load was applied by VDLOAD subroutine. The finite element analysis was performed and the analysis results were compared with the experimental measurements, in which the both the results agree with each other very well. And then the residual stress distribution of the sheet was analyzed after laser shock peening under different laser processing parameters. It is shown that the residual stress decreases firstly and then increases with the rise of laser power density from 0.84 GW/cm2 to 5.29 GW/cm2. And the residual stress obtains the minimum value -230 MPa at the laser power density of 3.06 GW/cm2. With the increasing of spot diameter from 4 mm to 6 mm, the residual stress increased from -214 MPa to -30 MPa. With the increasing of laser pulse width from 10 ns to 40 ns, the residual stress decreased from -21 MPa to -288 MPa; and the depth of the compressive residual stress increased too. For all simulations under different LSP parameters, the minimum surface residual stress achieved at the bottom surface of the groove as well.
Key words:    laser shock peening    7050-T7451 aluminum sheet    groove    residual stress    processing parameters   
收稿日期: 2018-09-12     修回日期:
DOI: 10.1051/jnwpu/20193740643
基金项目: 国家自然科学基金(11572250)资助
通讯作者: 马玉娥(1975-),女,西北工业大学教授,主要从事复合材料结构力学和强度研究。E-mail:ma.yu.e@nwpu.edu.cn     Email:ma.yu.e@nwpu.edu.cn
作者简介: 杜永(1992-),西北工业大学博士研究生,主要从事复合材料结构力学和结构强度研究。
相关功能
PDF(2769KB) Free
打印本文
把本文推荐给朋友
作者相关文章
杜永  在本刊中的所有文章
马玉娥  在本刊中的所有文章
苟磊  在本刊中的所有文章
郭超  在本刊中的所有文章
李博  在本刊中的所有文章
李钢  在本刊中的所有文章

参考文献:
[1] HU Zhengyun, LI Manfu, XIE Lansheng. Finite Element Simulation of Residual Stress Field in TB6 Titanium Alloy Induced by Laser Shock Peening and Shot Peening[J]. Journal of Aeronautical Materials, 2013, 33(4):37-42
[2] GRANADOS-ALEJO V, RUBIO-GONZALEZ C, VAZQUEZ-JIMENEZ C A, et al. Influence of Specimen Thickness on the Fatigue Behavior of Notched Steel Plates Subjected to Laser Shock Peening[J]. Optics & Laser Technology, 2018, 101:531-544
[3] MENG Xiankai, ZHOU Jianzhong, SU Chun, et al. Residual Stress Relaxation and Its Effects on the Fatigue Properties of Ti6Al4V Alloy Strengthened by Warm Laser Peening[J]. Materials Science & Engineering A, 2017, 680:297-304
[4] KATTOURA M, MANNAVA S R, DONG Q, et al. Effect of Laser Shock Peening on Elevated Temperature Residual Stress, Microstructure and Fatigue Behavior of ATI 718Plus Alloy[J]. International Journal of Fatigue, 2017, 102:121-134
[5] 姜银方, 彭涛涛, 虞文军,等. 激光冲击强化对钛合金棒件疲劳寿命的影响[J]. 激光与红外, 2017, 47(9):1108-1112 JIANG Yinfang, PENG Taotao, YU Wenjun, et al. Influence of Laser Shock Peening on Fatigue Life of Titanium Alloy Rods[J]. Laser and Infrared, 2017, 47(9):1108-1112(in Chinese)
[6] UMAPATHI A, SWAROOP S. Deformation of Single and Multiple Laser Peened TC6 Titanium Alloy[J]. Optics Laser Technology, 2018, 100:309-316
[7] SHEN X, SHUKLA P, NATH S, et al. Improvement in Mechanical Properties of Titanium Alloy(Ti-6Al-7Nb) Subject to Multiple Laser Shock Peening[J]. Surface & Coatings Technology, 2017, 327:101-109
[8] 陈瑞芳, 桑毅, 武敬伟,等. 7050铝合金激光冲击强化的试验和数值模拟[J]. 江苏大学学报, 2009, 30(2):113-117 CHEN Ruifang, SANG Yi, WU Jingwei, et al. Experiment and Numerical Simulation of Laser Shock Processing in 7050 Aluminum Alloy[J]. Journal of Jiangsu University, 2009, 30(2):113-117(in Chinese)
[9] 黄舒, 盛杰, 谭文胜,等. 激光喷丸强化IN718合金晶粒重排与疲劳特性[J]. 光学学报, 2017(4):225-233 HUANG Shu, SHENG Jie, TAN Wensheng, et al. Grain Rearrangement and Fatigue Property of IN718 Alloy Strengthened by Laser Peening[J]. Acta Optica Sinica, 2017(4):225-233(in Chinese)
[10] MOSTAFA A M, HAMEED M F, OBAYYA S S. Effect of Laser Shock Peening on the Hardness of AL-7075 Alloy[EB/OL]. (2017-08-05)[2019-06-27]. https://doi.org/10.1016/j.jksus.2017.07.012
[11] 张兴权, 张永康, 顾永玉,等. 激光冲击强化2024-T3铝合金的数值模拟与试验[J]. 农业机械学报, 2007, 38(12):181-184 ZHANG Xingquan, ZHANG Yongkang, GU Yongyu, et al. Numerical Simulation and Experimental Investigation on Laser Shock Processing[J]. Transactions of the Chinese Society for Agricultural Machinery, 2007, 38(12):181-184(in Chinese)
[12] DORMAN M, TOPARLI M B, SMYTH N, et al. Effect of Laser Shock Peening on Residual Stress and Fatigue Life of Clad 2024 Aluminium Sheet Containing Scribe Defects[J]. Materials Science & Engineering A, 2012, 548(3):142-151
[13] 周建忠, 左立党, 黄舒,等. 基于应变速率的激光喷丸强化6061-T6铝合金力学性能分析[J]. 中国激光, 2012, 39(5):101-106 ZHOU Jianzhong, ZUO Lidang, HUANG Shu, et al. Analysis on Mechanical Property of 6061-T6 Aluminum Alloy by Laser Shot Peening Based on Strain Rate[J]. Chinese Journal of Lasers, 2012, 39(5):101-106(in Chinese)
[14] CORATELLA S, STICCHI M, TOPARLI M B, et al. Application of the Eigenstrain Approach to Predict the Residual Stress Distribution in Laser Shock Peened AA7050-T7451 Samples[J]. Surface & Coatings Technology, 2015, 273(1):39-49
[15] VASU A, GRANDHI R V. Effects of Curved Geometry on Residual Stress in Laser Peening[J]. Surface and Coatings Technology, 2013,218:71-79
[16] YANG C, HODGSON P D, LIU Q, et al. Geometrical Effects on Residual Stresses in 7050-T7451 Aluminum Alloy Rods Subject to Laser Shock Peening[J]. Journal of Materials Processing Technology, 2008,201(1):303-309
[17] FABBRO R, PEYRE P, BERTHE L, et al. Physics and Applications of Laser-Shock Processing[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2000, 3888(6):155-164
[18] 花国然, 蒋苏州, 曹宇鹏,等. 激光冲击7050铝合金表面"残余应力洞"的模拟[J]. 金属热处理, 2017, 42(7):154-157 HUA Guoran, JIANG Suzhou, CAO Yupeng, et al. Numerical Simulation of Residual Stress Hole on 7050 Aluminum Alloy Under Laser Shock[J]. Heat Treatment of Metals, 2017, 42(7):154-157(in Chinese)
[19] 张永康, 周立春, 任旭东,等. 激光冲击TC4残余应力场的试验及有限元分析[J]. 江苏大学学报, 2009, 30(1):10-13 ZHANG Yongkang, ZHOU Lichun, REN Xudong, et al. Experiment and Finite Element Analysis on Residual Stress Field in Laser Shock Processing TC4 Titanium Alloy[J]. Journal of Jiangsu University, 2009, 30(1):10-13(in Chinese)
[20] 顾永玉, 张永康, 张兴权,等. 约束层对激光驱动冲击波压力影响机理的理论研究[J]. 物理学报, 2006, 55(11):5885-5891 GU Yongyu, ZHANG Yongkang, ZHANG Xingquan, et al. Theoretical Study on the Influence of the Overlay on the Pressure of Laser Shock Wave in Photomechanics[J]. Acta Physica Sinica, 2006, 55(11):5885-5891(in Chinese)