带扰流板下偏的多段翼型地面效应数值模拟 -- 西北工业大学学报,2019,37(1):167-176
论文:2019,Vol:37,Issue(1):167-176
引用本文:
刘江, 白俊强, 高国柱, 昌敏, 刘南. 带扰流板下偏的多段翼型地面效应数值模拟[J]. 西北工业大学学报
LIU Jiang, BAI Junqiang, GAO Guozhu, CHANG Min, LIU Nan. Numerical Simulation on Aerodynamics of Multi-Element Airfoil with Drooped Spoiler in Ground Effect[J]. Northwestern polytechnical university

带扰流板下偏的多段翼型地面效应数值模拟
刘江1, 白俊强1, 高国柱2, 昌敏3, 刘南4
1. 西北工业大学 航空学院, 陕西 西安 710072;
2. 中国电子科技集团公司 第三十八研究所浮空平台部, 合肥 230088;
3. 西北工业大学 无人系统研究院, 陕西 西安 710072;
4. 中航工业空气动力研究院, 长春 沈阳 110034
摘要:
采用有限体积法和k-ω SST湍流模型求解雷诺平均N-S方程,使用运动壁面边界条件模拟地面的相对运动,研究了地面效应对带扰流板下偏的多段翼型气动特性的影响,并分析了地效影响下升力系数减小的原因。结果表明:随着离地高度的减小,多段翼型的升力和阻力减小,升阻比有所增大;升力系数的减小幅值随着离地高度的减小和迎角的增大逐渐增大,最大可以减小22%左右;地效影响下,主翼上表面吸力减小导致的升力系数减小幅值是下表面压力增大导致的升力系数增大幅值的3倍以上。升力系数减小原因分析表明:①地面效应对干净翼型升力系数的影响与迎角范围有关,在中小迎角下升力系数增大,在大迎角下升力系数减小,而多段翼型往往工作在大迎角下的起降阶段,故其升力系数在地效作用下减小;②扰流板下偏前后的升力系数增量随着离地高度的减小而减小,最大减小量可以达到50%左右,说明地面效应使得多段翼型前后部件之间的增升作用减弱,从而导致多段翼型的升力系数进一步减小。
关键词:    扰流板下偏    多段翼型    地面效应    数值模拟    气动性能   
Numerical Simulation on Aerodynamics of Multi-Element Airfoil with Drooped Spoiler in Ground Effect
LIU Jiang1, BAI Junqiang1, GAO Guozhu2, CHANG Min3, LIU Nan4
1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
2. Department of Floating Platform, No. 38 Research Institute of CETC, Hefei 230088, China;
3. Unmanned System Research Institute, Northwestern Polytechnical University, Xi'an 710072, China;
4. AVIC Aerodynamics Research Institute, Sheng yang 110034, China
Abstract:
By using the finite volume method and k-ω SST turbulence model to solve the Reynolds Average Navier-Stokes equation and using the slipping wall to simulate the relative movement of the ground, the ground effect on the aerodynamic characteristic of multi-element airfoil with drooped spoiler is investigated numerically, and the reason why the lift coefficient decreased in ground effect is analyzed. The results indicate that, with the reduction in ride height, the lift and the drag decrease and the lift-drag ratio increases for the multi-element airfoil; the amplitude of the reduction in the lift coefficient increases with the reduction in ride height and the increase in the angle of attack, the maximum of lift coefficient can be reduced by about 22%; with the effect of ground, the losses of suction at upper surface make the lift decrease, the increases of pressure at lower surface make the lift increase, the variation of the lift coefficient for the main wing caused by the former is more than three times that of the latter. Analyzing the reason why the lift coefficient decreases showed that:on the one hand, ground effect on the lift coefficient for clean airfoil is changed with the range of angle of attack. For the low-to-moderate angle of attack, the lift coefficient increases; for the high angle of attack, the lift coefficient decreases. But multi-element airfoil works in the takeoff and landing stage for the high angle of attack, which causes the reduction of the lift coefficient in ground effect. On the other hand, the increase of the lift coefficient caused by the deflection of spoiler decreases with the reduction in ride height and the maximum reduction can be about 50%, which illustrates that ground effect makes interaction of the front and back section for the multi-element airfoil weak, resulting in further decreasing the coefficient for the multi-element airfoil.
Key words:    multi-element airfoil    deflection of spoiler    ground effect    numerical simulation    CFD    high-lift devices    flow mechanism    aerodynamic characteristic    angle of attack    drag coefficient    flow fields    lift drag ratio    Mach number    turbulence models   
收稿日期: 2018-02-01     修回日期:
DOI: 10.1051/jnwpu/20193710167
通讯作者:     Email:
作者简介: 刘江(1994-),西北工业大学硕士研究生,主要从事飞行器气动设计研究。
相关功能
PDF(2471KB) Free
打印本文
把本文推荐给朋友
作者相关文章
刘江  在本刊中的所有文章
白俊强  在本刊中的所有文章
高国柱  在本刊中的所有文章
昌敏  在本刊中的所有文章
刘南  在本刊中的所有文章

参考文献:
[1] NAKAYAMA H, KIM H J, MATSUSHIMA K, et al. Aerodynamic Optimization of Multi-Element Airfoil[C]//AIAA Aerospace Sciences Meeting and Exhibit, 2006
[2] MEREDITH P T. Viscous Phenomena Affecting High-Lift Systems and Suggestions for Future CFD Development[C]//Agard Conference Proceedings 515 High-Lift System Aerodynamics, 1993, 19:1-8
[3] SCHOLZ P, MAHMOOD S, CASPER M, et al. Design of Active Flow Control at a Drooped Spoiler Configuration[C]//AIAA Applied Aerodynamics Conference, 2006
[4] 沈广琛, 白俊强, 刘南,等. 新型机翼后缘变弯运动机构仿真及其气动影响研究[J]. 西北工业大学学报, 2016, 34(4):578-586 SHEN Guangchen, BAI Junqiang, LIU Nan, et al. Mechanical Simulation and Aerodynamic Analysis on a New Type of Wing Trailing Edge Variable Camber[J]. Journal of Northwestern Polytechnical University, 2016, 34(4):578-586 (in Chinese)
[5] ROZHDESTVENSKY K V. Aerodynamics of a Lifting System in Extreme Ground Effect[M]. Springer, Berlin Heidelberg, 2000
[6] MELVIN A, MARTINELLI L. Aerodynamic Shape Optimization of Multi-Element Airfoils in Ground Effect[C]//AIAA Aerospace Sciences Meeting and Exhibit, 2008
[7] AHMED M R, TAKASAKI T, KOHAMA Y. Aerodynamics of a NACA4412 Airfoil in Ground Effect[J]. AIAA Journal, 2007, 45(1):37-47
[8] 秦绪国,刘沛清,屈秋林,等. 多段翼型地面效应数值模拟与分析[J]. 航空动力学报, 2011, 26(4):890-897 QIN Xuguo, LIU Peiqing, QU Qiulin, et al. Numerical Simulation and Analysis on Aerodynamics of Three-Element Airfoil in Ground Effect[J]. Journal of Aerospace Power, 2011, 26(4):890-897 (in Chinese)
[9] HSIUN C M, CHEN C K. Aerodynamic Characteristics of a Two Dimensional Airfoil with Ground Effect[J]. Journal of Aircraft, 1996, 33(2):386-392
[10] QU Q L, WANG W, LIU P, et al. Airfoil Aerodynamics in Ground Effect for Wide Range of Angles of Attack[J]. AIAA Journal, 2015, 53(4):1-14
[11] QU Q L, WANG W, LIU P, et al. Aerodynamics and Flow Mechanics of a Two-Element Airfoil in Ground Effect[C]//AIAA Aerospace Sciences Meeting, 2015
[12] 何雨薇,李亚林,郑隆乾. 多段翼型地面效应数值研究[J]. 中国科技博览, 2012(9):100-102 HE Yuwei, LI Yalin, ZHENG Longqian. Numerical Simulation on Aerodynamics of Three-Element Airfoil in Ground Effect[J]. China Science and Technology Review, 2012(9):100-102 (in Chinese)
[13] QU Q L, HUANG L, LIU P, et al. Numerical Study of Aerodynamics and Flow Physics of the 30P30N Three-Element Airfoil in Dynamic Ground Effect[C]//AIAA Applied Aerodynamics Conference. 2016
[14] RUMSEY C L, YING S X. Prediction of High Lift:Review of Present CFD Capability[J]. Progress in Aerospace Sciences, 2002, 38(2):145-180
[15] MENTER F R. Zonal Two-Equation K-W Turbulence Model for Aerodynamic Flows[R]. AIAA-1933-2906
[16] CATALANO P, AMATO M. An evaluation of RANS Turbulence Modelling for Aerodynamic Applications[J]. Aerospace Science & Technology, 2003, 7(7):493-509
[17] ELIASSON P, CATALANO P, PAPE M C L, et al. Improved CFD Predictions for High Lift Flows in the European Project EUROLIFT Ⅱ[C]//AIAA Applied Aerodynamics Conference, 2007
[18] ZERIHAN J, ZHANG X. Aerodynamics of a Single Element wing in Ground Effect[J]. Journal of Aircraft, 2000, 37(6):1058-1064
[19] MOIR I R M. Measurements on a Two-Dimensional Aerofoil with High-Lift Devices:a Selection of Experimental Test Cases for the Validation of CFD Codes[R]. AGARD-AR-303, 1994
[20] FEJTEK I. Summary of Code Validation Results for a Multiple Element Airfoil Test Case[C]//European Conference on Information Systems, 2013:422-432
[21] SMITH A M O. High-Lift Aerodynamic[J]. Journal of Aircraft, 1975, 12(6):501-530
相关文献:
1.刘江, 郑隆乾, 白俊强, 沈广琛, 刘睿.扰流板下偏对增升装置气动性能的影响及流动机理研究[J]. 西北工业大学学报, 2017,35(5): 813-820