基于显著性检测的声呐图像快速降噪研究 -- 西北工业大学学报,2019,37(1):80-86
论文:2019,Vol:37,Issue(1):80-86
引用本文:
金磊磊, 梁红, 杨长生. 基于显著性检测的声呐图像快速降噪研究[J]. 西北工业大学学报
JIN Leilei, LIANG Hong, YANG Changsheng. Fast Denoising of Sonar Image Based on Saliency Detection[J]. Northwestern polytechnical university

基于显著性检测的声呐图像快速降噪研究
金磊磊, 梁红, 杨长生
西北工业大学 航海学院, 陕西 西安 710072
摘要:
声呐图像在获取过程中易受噪声污染,而降噪性能好的算法通常时间复杂度较高。鉴于人类视觉注意机制,将基于流形排序(MR)的显著性检测方法引入声呐图像处理,将图像自动分割为显著区域和非显著区域两部分。对于占比小的显著区域采用三维块匹配(BM3D)算法降噪以保护图像主要信息,对非显著背景区域采用执行效率较高的均值滤波(MF)算法。将所提算法同经典MF,BM3D算法进行主观和客观评价指标对比,结果表明,所提算法在提高图像视觉效果的同时,执行时间较BM3D算法大为减少,可以满足水下航行器实时作业的应用需求。
关键词:    声呐图像    图像降噪    流行排序    显著性检测    图像分割    三维块匹配    均值滤波   
Fast Denoising of Sonar Image Based on Saliency Detection
JIN Leilei, LIANG Hong, YANG Changsheng
School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
Sonar image is inevitably contaminated by noise during the acquisition process, while the noise reduction algorithms with good performance are usually of high time complexity. The human visual attention mechanism usually guides the eyes to salient region and gives priority to those visual information. In view of this, saliency detection based on manifold ranking was introduced into sonar image processing, to divide the image into two parts:salient region and non-significant region. For the salient region with small proportion, block-matching and 3-D filtering (BM3D) algorithm was adopted to reduce noise and protect the main information of the image; for the non-significant background which was not very concerned, high efficiency mean filtering was used. On the collected sonar image data set, the present algorithm was compared with the classic MF and BM3D algorithms through the subjective and 2 objective evaluation indexes. The experimental results show that the efficiency of the present algorithm is much higher than that of BM3D, while the image visual effect is guaranteed, which is satisfied with the real-time application requirement of autonomous underwater vehicles.
Key words:    sonar image    image denoising    manifold ranking    saliency detection    image segmentation    block-matching and 3-D filtering    mean filtering   
收稿日期: 2018-03-02     修回日期:
DOI: 10.1051/jnwpu/20193710080
基金项目: 国家自然科学基金(61379007,61771398)资助
通讯作者:     Email:
作者简介: 金磊磊(1991-),西北工业大学博士研究生,主要从事图像处理和水下目标识别研究。
相关功能
PDF(2129KB) Free
打印本文
把本文推荐给朋友
作者相关文章
金磊磊  在本刊中的所有文章
梁红  在本刊中的所有文章
杨长生  在本刊中的所有文章

参考文献:
[1] HAN Y, TIAN X, ZHOU F, et al. A Real-Time 3-D Underwater Acoustical Imaging System[J]. IEEE Journal of Oceanic Engineering, 2014, 39(4):620-629
[2] FEI T, KRAUS D, ZOUBIR A M. Contributions to Automatic Target Recognition Systems for Underwater Mine Classification[J]. IEEE Trans on Geoscience & Remote Sensing, 2014, 53(1):505-518
[3] HEL-OR Y, SHAKED D. A Discriminative Approach for Wavelet Denoising[J]. IEEE Trans on Image Processing, 2008, 17(4):443-457
[4] BUADES A, COLL B, MOREL J M. A Non-Local Algorithm for Image Denoising[C]//IEEE International Conference on Computer Vision and Pattern Recognition, 2005, 2:60-65
[5] DABOV K, FOI A, KATKOVNIK V, et al. Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering[J]. IEEE Trans on Image Processing, 2007, 16(8):2080-2095
[6] LEBRUN M. An Analysis and Implementation of the BM3D Image Denoising Method[J]. Image Processing on Line, 2012, 2(25):175-213
[7] DABOV K, FOI A, KATKOVNIK V, et al. Color Image Denoising via Sparse 3D Collaborative Filtering with Grouping Constraint in Luminance-Chrominance Space[C]//IEEE International Conference on Image Processing, 2007:313-316
[8] MAGGIONI M, FOI A. Joint Removal of Random and Fixed-Pattern Noise through Spatiotemporal Video Filtering[J]. IEEE Trans on Image Processing, 2014, 23(10):4282-4296
[9] 张哲熙. 基于BM3D的图像去噪算法研究[D]. 西安:西安电子科技大学, 2017 ZHANG Zhexi. Research on Image Denoising Algorithm Based on BM3D[D]. Xi'an, Xidian University, 2017 (in Chinese)
[10] ZHU W, LIANG S, WEI Y, et al. Saliency Optimization from Robust Background Detection[C]//IEEE International Conference on Computer Vision and Pattern Recognition, 2014:2814-2821
[11] 郑雄波, 张晓威. 多小波变换在声纳图像降噪中的应用研究[J]. 数值计算与计算机应用, 2011, 32(2):89-96 ZHENG Xiongbo, ZHANG Xiaowei. Study to the Application of Multiwavelets Transforms in Sonar Image Denoising[J]. Journal on Numerical Methods and Computer Applications, 2011, 32(2):89-96 (in Chinese)
[12] DAVIS A, LUGSDIN A. High Speed Underwater Inspection for Port and Harbour Security Using Coda Echoscope 3D Sonar[C]//IEEE International Conference on Oceans, 2005:2006-2011
[13] ARRINGTON C M, CARR T H, MAYER A R, et al. Neural Mechanisms of Visual Attention:Object-Based Selection of a Region in Space[J]. Journal of Conference Neuroscience, 2014, 12(suppl 2):106-117
[14] ACHANTA R, SHAJI A, SMITH K, et al. SLIC Superpixels[R]. EPFL Technical Report 149300, 2010
[15] YANG C, ZHANG L, LU H, et al. Saliency Detection via Graph-Based Manifold Ranking[C]//IEEE International Conference on Computer Vision and Pattern Recognition, 2013:3166-3173
[16] 霍冠英, 刘静, 李庆武, 等. 空间约束FCM与MRF结合的侧扫声呐图像分割算法[J]. 仪器仪表学报, 2017, 38(1):226-235 HUO Guanying, LIU Jing, LI Qingwu, et al. Side-Scan Sonar Image Segmentation Algorithm Based on Space-Constrained FCM and MRF[J]. Chinese Journal of Scientific Instrument, 2017, 38(1):226-235 (in Chinese)