基于GRNN建立开孔型多孔玻璃吸声性能模型 -- 西北工业大学学报,2019,37(1):57-62
论文:2019,Vol:37,Issue(1):57-62
引用本文:
张旭博, 徐颖, 张婷颖, 李国栋. 基于GRNN建立开孔型多孔玻璃吸声性能模型[J]. 西北工业大学学报
ZHANG Xubo, XU Ying, ZHANG Tingying, LI Guodong. Building Sound Absorption Performance Model of Porous Glass Based on GRNN[J]. Northwestern polytechnical university

基于GRNN建立开孔型多孔玻璃吸声性能模型
张旭博, 徐颖, 张婷颖, 李国栋
西北工业大学 航海学院, 陕西 西安 710072
摘要:
采用广义回归神经网络(GRNN)方法,在开孔型多孔玻璃16组实验数据基础上,以12组随机数据作为训练样本,4组作为检验样本,建立以多孔玻璃厚度和孔隙率的GRNN模型,得到训练的最佳光滑因子σ=0.1,最大迭代次数为20;结果表明,模型预测值与实验值的平均误差为0.003,建立的模型精度高,预测吸声系数曲线形貌相似度高;该方法有简单、训练样本少、快速、准确等优点。
关键词:    广义回归神经网络    吸声系数    多孔玻璃   
Building Sound Absorption Performance Model of Porous Glass Based on GRNN
ZHANG Xubo, XU Ying, ZHANG Tingying, LI Guodong
School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
The generalized regression neural network (GRNN) model of sound absorption coefficient of porous glass was built on data from 16 groups gained by experiments, where 12 groups were randomly selected as trained samples and the other 4 groups were as tested ones. This GRNN model which has two parameters, porosity and thickness as the inputs, was set the maximum iteration number 20, getting the optimal trained spread parameter σ=0.1. The results showed that the average error of this model was 0.003, and this model has high precision and the prediction curve of the sound absorption coefficient was very similar to the experiments. The advantages of this method are simple, needing less trained samples, rapid and accurate.
Key words:    generalized regression neural network    sound absorption coefficient    porous glass   
收稿日期: 2018-03-01     修回日期:
DOI: 10.1051/jnwpu/20193710057
基金项目: 西北工业大学研究生种子基金(Z2017089)资助
通讯作者:     Email:
作者简介: 张旭博(1992-),西北工业大学硕士研究生,主要从事声学多孔材料研究。
相关功能
PDF(1194KB) Free
打印本文
把本文推荐给朋友
作者相关文章
张旭博  在本刊中的所有文章
徐颖  在本刊中的所有文章
张婷颖  在本刊中的所有文章
李国栋  在本刊中的所有文章

参考文献:
[1] 丁宇翔, 徐颖, 徐宁. 连续铜纤维多孔材料吸声性能的研究[J]. 西北工业大学学报, 2012, 30(4):553-556 DING Yuxiang, XU Ying, XU Ning. Experimental Study on Sound Absorption Performance of Porous Copper-Fibrous Material[J]. Journal of Northwestern Polytechnical University, 2012, 30(4):553-556 (in Chinese)
[2] 马大猷. 现代声学理论基础[M]. 北京:科学出版社, 2004:230-240 MA Dayou. Modern acoustics theory[M]. BeiJing, Science Press, 2004:230-240 (in Chinese)
[3] 徐颖, 李珊, 王常力, 等. 不锈钢纤维多孔材料吸声性能的研究[J]. 西北工业大学学报, 2015, 33(3):401-404 XU Ying, LI Shan, WANG Changli, et al. Exploring Sound Absorption Performance of Stainless Steel Fiber Porous Materials[J]. Journal of Northwestern Polytechnical University, 2015, 33(3):401-404 (in Chinese)
[4] 孙莉莉,祁元春. 泡沫玻璃的研究进展[J]. 化学工程与装备,2012(1):111-113 SUN Lili, QI Yuanchun. Progress and Study of Foam Glass[J]. Chemical Engineering & Equipment, 2012(1):111-113 (in Chinese)
[5] 邹伟仁, 徐颖, 方庆川, 等. 一种新型多孔玻璃的制备及吸声性能研究[J]. 西北工业大学学报, 2014, 32(3):368-372 ZOU Weiren, XU Ying, FANG Qingchuan, et al. Preparation and Absorbing Properties of a Novel Porous Glass[J]. Journal of Northwestern Polytechnical University, 2014, 32(3):368-372 (in Chinese)
[6] DELANY M E, BAZLEY E N. Acoustical Properties of Fibrous Absorbent Materials[J]. Applied Acoustics, 1970, 3(7):105-116
[7] ALLARD J F, ATALA N. Propagation of Sound in Porous Media Modeling Sound Absorbing Materials[M]. New York, Elsevier Applied Science, 1993:20-85
[8] TARNOW V. Airflow Resistivity of Models of Fibrous Acoustic Materials[J]. Journal of the Acoustical Society of America, 1996, 100(100):3706-3713
[9] 郭斌, 孟令启, 杜勇, 等. 基于GRNN神经网络的中厚板轧机厚度预测[J]. 中南大学学报, 2011, 42(4):960-965 GUO Bin, MENG Lingqi, DU Yong, et al. Thickness Prediction of Medium Plate Mill Based on GRNN Neural Network[J]. Journal of Central South University, 2011, 42(4):960-965 (in Chinese)
[10] 高凌琴. 基于GRNN的汽车保有量预测模型[J]. 山东理工大学学报, 2011, 25(4):85-87 GAO Linqin. The forecasting Model of Vehicle Ownership Based on GRNN[J]. Journal of Shandong Unirersity of Technology, 2011, 25(4):85-87 (in Chinese)
[11] 冯志鹏, 宋希庚, 薛冬新, 等. 基于广义回归神经网络的时间序列预测研究[J]. 振动、测试与诊断, 2003(2):29-33 FENG Zhipeng, SONG Xigeng, XUE Dongxin, et al. General Regression Neural Network Based Prediction of Time Series[J]. Journal of Vibration Measurement & Diagnosis, 2003(2):29-33 (in Chinese)
[12] LIU J, BAO W, SHI L, et al. General Regression Neural Network for Prediction of Sound Absorption Coefficients of Sandwich Structure Nonwoven Absorbers[J]. Applied Acoustics, 2014, 76(1):128-137
[13] 刘鹏辉, 杨宜谦, 姚京川. 多孔吸声材料的吸声特性研究[J]. 噪声与振动控制, 2011, 31(2):123-126 LIU Penghui, YANG Yiqian, YAO Jingchuan. Study on Absorption Property of Porous Sound-Absorbing Materials[J]. Noise and Vibration Control, 2011, 31(2):123-126 (in Chinese)
[14] 刘新金, 刘建立, 徐伯俊, 等. 分层多孔材料吸声结构的性能分析[J]. 振动与冲击, 2012, 31(5):106-110 LIU Xinjin, LIU Jianli, XU Bojun, et al. Acoustic Analysis for a Sound-Absorbing Structure with Multi-Layered Porous Material[J]. Journal of Vibration and Shock, 2012, 31(5):106-110 (in Chinese)
[15] 史峰, 王小川. MATLAB神经网络30个案例分析[M]. 北京:北京航空航天大学出版社, 2010:73-80 SHI Feng, WANG Xiaochuan. Analysis of 30 Cases of MATLAB Neural Network[M]. Beijing, Beihang University Press, 2010:73-80 (in Chinese)