水平Rijke管热声不稳定的双稳态和触发分析 -- 西北工业大学学报,2019,37(1):48-56
论文:2019,Vol:37,Issue(1):48-56
引用本文:
冯建畅, 敖文, 刘佩进. 水平Rijke管热声不稳定的双稳态和触发分析[J]. 西北工业大学学报
FENG Jianchang, AO Wen, LIU Peijin. Bistability and Triggering Analysis of Thermoacoustic Instability in a Horizontal Rijke Tube[J]. Northwestern polytechnical university

水平Rijke管热声不稳定的双稳态和触发分析
冯建畅, 敖文, 刘佩进
西北工业大学 燃烧、热结构与内流场重点实验室, 陕西 西安 710072
摘要:
建立了水平Rijke管热声模型,并利用Galerkin方法对控制方程进行展开,实现数值求解。利用非线性动力学理论对系统进行分析,得到系统的全局稳定区域、全局不稳定区域以及双稳态区域。获得了无量纲加热功率K、热源相对位置xf、阻尼系数c1与无量纲时间延迟τ之间的稳定区域图谱。发现热源相对位置xf的稳定性区域关于xf=0.25近似呈对称分布,阻尼系数c1的双稳态区域在τ=0.5时达到最大。研究了系统在双稳态区域内的触发和极限环振荡现象,获得无量纲加热功率K、阻尼系数c1和热源相对位置xf等参数变化时的临界触发值。发现系统的临界触发值P1U1具有一致的变化规律,其随无量纲加热功率K的增大而减小,但随阻尼系数c1的增大呈现增大趋势。特别的,临界触发值随热源相对位置xf的增大呈现先减小后增大的趋势。在双稳态区域内,系统稳定极限环振荡的振幅和频率与初始扰动值无关,但扰动值会影响系统达到稳定极限环的时间,系统在U1=0.4扰动下达到极限环所需时间比U1=0.8延长约3倍。
关键词:    热声不稳定    非线性动力学    双稳态    触发   
Bistability and Triggering Analysis of Thermoacoustic Instability in a Horizontal Rijke Tube
FENG Jianchang, AO Wen, LIU Peijin
Science and Technology on Combustion, Internal Flow and Thermo-Structure Laboratory, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
Dynamical systems theory has been often employed to study nonlinear flow and flame dynamics in combustion systems. However, the corresponding studies using nonlinear dynamics to analyze the Rijke tube thermoacoustic system are still occasional. Little study has been performed to elucidate the characteristics of triggering phenomenon in the bistable region of the thermoacoustic system. In this regard, the main objectives of the present research are to contribute analysis for the lack of literature in these areas, especially to study the bistability and triggering properties of a thermoacoustic system. The thermoacoustic model of a horizontal Rijke tube is firstly established. The governing equations are expanded and solved by using Galerkin method. The analysis of the system is carried out by using nonlinear dynamics theory. Linear and nonlinear stability boundaries for the variation of non-dimensional heater power, damping coefficient and the relative heater location are obtained for different values of non-dimensional time lag in the system. Regions of global stability, global instability and bistability are characterized. The bistable region in the relative heater location is distributed symmetrically with xf=0.25. It is observed that the bistable region in the relative heater location firstly decreases with an increase in the non-dimensional time lag, reaching a minimum value at a certain critical value of τ, then increases. The situation for the bistable region in the damping coefficient presents a reverse variation, And the bistable region reach the maximum at τ=0.5. The triggering phenomenon and limit cycle of the system in the bistable region are studied. The critical triggering values are determined with the changes of the non-dimensional heater power, the damping coefficient and the relative heater location. The critical triggering value of velocity perturbation decreases with the increase of non-dimensional heater power, whereas an increasing trend is observed with the increase of damping coefficient. Interestingly, the critical triggering value firstly decreases and then increases with the increase of the relative heater location. The variation of critical triggering value for pressure perturbation is found to correspond with velocity perturbation. In the bistable region, the amplitude and frequency of the steady limit cycle oscillation of the system are independent of the initial perturbation values, but the perturbation value has strong effect on the duration needed to achieve the steady limit cycle, and the time required for the system to reach the limit cycle under the perturbation of U1=0.4 is about 3 times longer than that of U1=0.8.
Key words:    thermoacoustic instability    nonlinear dynamics    bistability    triggering    Rijke tube    Galerkin method   
收稿日期: 2017-12-09     修回日期:
DOI: 10.1051/jnwpu/20193710048
基金项目: 陕西省自然科学基金(2018JQ5112)、国家自然科学基金(51506181)与中央高校基本科研业务费专项资金(3102018ZY003)资助
通讯作者:     Email:
作者简介: 冯建畅(1991-),西北工业大学硕士研究生,主要从事航空宇航推进理论与工程研究。
相关功能
PDF(1618KB) Free
打印本文
把本文推荐给朋友
作者相关文章
冯建畅  在本刊中的所有文章
敖文  在本刊中的所有文章
刘佩进  在本刊中的所有文章

参考文献:
[1] FLANDRO G A, Fischbach S R, Majdalani J. Nonlinear Rocket Motor Stability Prediction:Limit Amplitude, Triggering, and Mean Pressure Shift[J]. Physics of Fluids, 2007, 19(9):727-779
[2] MACQUISTEN M A. Combustion Oscillations in a Twin-Stream Afterburner[J]. Journal of Sound and Vibration, 1995, 188(4):545-560
[3] KIM K T, HOCHGREB S. Effects of Nonuniform Reactant Stoichiometry on Thermoacoustic Instability in a Lean-Premixed Gas Turbine Combustor[J]. Combustion Science and Technology, 2012, 184(5):608-628
[4] HUBBARD S, DOWLING A P. Acoustic Resonances of an Industrial Gas Turbine Combustion System[J]. Journal of Engineering for Gas Turbines and Power, 2001, 123(4):766-773
[5] 汪拓, 吴锋, 李端勇, 等. 驻波热声系统的自激振荡机理[J]. 物理学报, 2015, 64(4):167-175 WANG Tuo, WU Feng, LI Duanyong, et al. Self-Excited Oscillation Mechanism of a Standing-Wave Thermoacoustic System[J]. Acta Physica Sinica, 2015, 64(4):167-175 (in Chinese)
[6] SOHN C H, HAN C C. A CFD Study on Thermoacoustic Instability of Methane/Air Flames in Gas Turbine Combustor[J]. Journal of Mechanical Science and Technology, 2005, 19(9):1811-1820
[7] ZELLHUBER M, SCHWING J, POLIFKE W, et al. Experimental and Numerical Investigation of Thermo-Acoustic Sources Related to High-Frequency Instabilities[J]. International Journal of Spray and Combustion Dynamics, 2014, 6(1):1-35
[8] HUANG X M, BAUMANN W T. Reduced-order Modeling of Dynamic Heat Release for Thermoacousyic Instability Prediction[J]. Combustion Science and Technology, 2007, 179(3):617-636
[9] OLGAC N, CEPEDA-GOMEZ R, ZALLUHOGLU U, et al. Parametric Investigation of Thermoacoustic Instability in a Rijke Tube:a Time-delay Perspective[J]. International Journal of Spray and Combustion Dynamics, 2015, 7(1):39-68
[10] 陈福连. Rijke管工作原理新探讨[J]. 西北工业大学学报, 1993, 11(2):184-188 CHEN Fulian. A New View on Mechanism of Rijke Phenomenon[J]. Journal of Northwestern Polytechnical University, 1993, 11(2):184-188 (in Chinese)
[11] ZHAO D, CHOW Z H. Thermoacoustic Instability of a Laminar Premixed Flame in Rijke Tube with a Hydrodynamic Region[J]. Journal of Sound and Vibration, 2013, 332(14):3419-3437
[12] LI J, MORGANS A S. Time Domain Simulations of Nonlinear Thermoacoustic Behaviour in a Simple Combustor Using a Wave-based Approach[J]. Journal of Sound and Vibration, 2015, 346:345-360
[13] LI X, ZHAO D, YANG X. Experimental and Theoretical Bifurcation Study of a Nonlinear Standing-Wave Thermoacoustic System[J]. Energy, 2017, 135:553-562
[14] ZHAO D, LI X Y. A Review of Acoustic Dampers Applied to Combustion Chambers In Aerospace Industry[J]. Progress in Aerospace Sciences, 2015, 74:114-130
[15] ZHAO D, LI L. Effect of Choked Outlet on Transient Energy Growth Analysis of a Thermoacoustic System[J]. Applied Energy, 2015, 160:502-510
[16] EPPERLEIN J P, BAMIEH B, ASTROM K J. Thermoacoustics and the Rijke Tube:Experiments, Identification, and Modeling[J]. IEEE Trans on Control Systems, 2015, 35(2):57-77
[17] ROTT N. Thermally Driven Acoustic Oscillations. Part Ⅱ:Stability Limit for Helium[J]. Zeitschrift Für Angewandte Mathematik Und Physik Zamp, 1973, 24(1):54-72
[18] HECKL M A. Non-linear Acoustic Effects in the Rijke Tube[J]. Acta Acustica, 1990, 72(1):63-71
[19] HANTSCHK C C, VORTMEYER D. Numerical Simulation of Self-Excited Thermoacoustic Instability in a Rijke Tube[J]. Journal of Sound and Vibration, 1999, 227(3):511-522
[20] MATVEEV K I. Thermoacoustic Instabilities in the Rijke Tube:Experiments and Modeling[D]. California, California Institute of Technology Pasadena, 2003
[21] MATVEEV K I, HERNANDEZ R. Modular System for Studying Tonal Sound Excitation in Resonators with Heat Addition and Mean Flow[J]. Journal of the Acoustical Society of America, 2012, 131(3):2472
[22] JAHNKE C C, CULICK F E C. Application of Dynamical Systems Theory to Nonlinear Combustion Instabilities[J]. Journal of Propulsion and Power, 1994, 10(4):508-517
[23] BALASUBRAMANIAN K, SUJITH R I. Thermoacoustic Instability in a Rijke Tube:Non-normality and Nonlinearity[J]. Physics of Fluids, 2008, 20(4):357-361
[24] MARIAPPAN S, SUBRAMANIAN P, SUJITH R I, et al. Bifurcation Analysis of Thermoacoustic Instability in a Horizontal Rijke Tube[J]. International Journal of Spray and Combustion Dynamics, 2010,2(4):325-356
[25] SUBRAMANIAN P, SUJITH R I, WAHI P. Subcritical Bifurcation and Bistability in Thermoacoustic Systems[J]. Journal of Fluid Mechanics, 2013, 715(1):210-238
[26] LUCA M, JUNIPER M P. Sensitivity Analysis of a Time-Delayed Thermo-Acoustic System via an Adjoint-Based Approach[J]. Journal of Fluid Mechanics, 2013, 719(3):183-202
[27] ZINN B T, LORES M E. Application of the Galerkin Method in the Solution of Non-linear Axial Combustion Instability Problems in Liquid Rockets[J]. Combustion Science and Technology, 1971, 4(1):269-278
[28] 冯建畅,敖文,刘佩进. Rijke管热声不稳定非线性动力学研究——分岔分析[J]. 工程热物理学报,2017(10):2261-2268 FENG Jianchang, AO Wen, LIU Peijin. Rijke Tube Thermoacoustic Instability Nonlinear Dynamics Study——Bifurcation Analysis[J]. Journal of Engineering Thermophysics, 2017(10):2261-2268 (in Chinese)
[29] 杨亚晶, 王万征. Rijke管热声不稳定的实验研究[J]. 西安交通大学学报, 2014, 48(5):21-26 YANG Yajing, WANG Wanzheng. Experimental Study on Thermoacoustic Instability in a Rijke Tube[J]. Journal of Xi'an Jiaotong University, 2014, 48(5):21-26
[30] WAUGH I C, JUNIPER M P, GEU M. Triggering in a Thermoacoustic System with Stochastic Noise[J]. International Journal of Spray and Combustion Dynamics, 2011, 3(3):225-241