一种估计边界元非线性特征值数目的数值方法 -- 西北工业大学学报,2019,37(1):28-34
论文:2019,Vol:37,Issue(1):28-34
引用本文:
王俊鹏, 校金友, 文立华. 一种估计边界元非线性特征值数目的数值方法[J]. 西北工业大学学报
WANG Junpeng, XIAO Jinyou, WEN Lihua. A Numerical Method for Estimating the Nonlinear Eigenvalue Numbers of Boundary Element[J]. Northwestern polytechnical university

一种估计边界元非线性特征值数目的数值方法
王俊鹏, 校金友, 文立华
西北工业大学 航天学院, 陕西 西安 710072
摘要:
近年来,一些新提出的非线性特征值解法很好地推动了大规模边界元模态分析问题的发展,但这类方法的效率和鲁棒性还普遍依赖于输入参数的选取,特别是与待求解特征值数目相关的参数,这一局限性也明显制约了边界元模态分析方法向实际工程应用的推广。围绕这一问题,发展了一种通用的边界元非线性特征值数目估计方法。首先,针对特征值数目解析计算公式中边界元矩阵关于频率求导困难的问题,采用解析函数的Cauchy积分公式,发展了一种非常易于同主流边界元快速算法库结合的边界元矩阵关于频率导数的插值计算格式;其次,将该插值计算格式与特征值数目解析计算公式结合,并通过无偏估计确定矩阵的迹,获得了适用于各类边界条件的边界元非线性特征值数目估计方法;最后,采用典型算例探索新方法最优输入参数的选取原则,并确定出了一组最优输入参数,而且通过大规模复杂算例对该方法具有的整体优异性能进行了验证。
关键词:    边界元    模态分析    非线性特征值数目    Cauchy积分公式    无偏估计   
A Numerical Method for Estimating the Nonlinear Eigenvalue Numbers of Boundary Element
WANG Junpeng, XIAO Jinyou, WEN Lihua
School of Astronautics, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
Recently, some new proposed methods for solving nonlinear eigenvalue problems (NEPs) have promoted the development of large-scale modal analysis using BEM. However, the efficiency and robustness of such methods are generally still dependent on input parameters, especially on the parameters related to the number of eigenvalues to be solved. This limitation obviously restricts the popularization of the practical engineering application of modal analysis using BEM. Therefore, this paper develops a numerical method for estimating the number of nonlinear eigenvalues of the boundary element method. Firstly, the interpolation method based on the discretized Cauchy integral formula of analytic function is used for obtaining the BEM matrix's derivative with regard to frequency, and this method is easily combined with the mainstream fast algorithm libraries of BEM. Secondly, the method for evaluating the eigenvalue number of BEM under various boundary conditions is obtained by combining the interpolation method with the analytic formula to obtain the eigenvalue number, while the unbiased estimation is used to determine the trace of matrix. Finally, a series of typical examples are used to explore the principle for selecting optimal input parameters in this method, and then a set of optimal input parameters are determined. The overall excellent performance of this method is verified by a complex large-scale example.
Key words:    boundary element method    modal analysis    nonlinear eigenvalue number    Cauchy integral formula    unbiased estimation   
收稿日期: 2018-03-02     修回日期:
DOI: 10.1051/jnwpu/20193710028
基金项目: 国家自然科学基金(11102154,11472217)与中央高校基本科研业务费专项资金资助
通讯作者:     Email:
作者简介: 王俊鹏(1992-),西北工业大学博士研究生,主要从事边界元法、非线性特征值问题研究。
相关功能
PDF(1227KB) Free
打印本文
把本文推荐给朋友
作者相关文章
王俊鹏  在本刊中的所有文章
校金友  在本刊中的所有文章
文立华  在本刊中的所有文章

参考文献:
[1] 姚振汉, 王海涛. 边界元法[M]. 北京:高等教育出版社, 2010 YAO Zhenhan, WANG Haitao. Boundary Element Method[M]. Beijing, Higher Education Press, 2010 (in Chinese)
[2] LIU Y J, MUKHERJEE S, NISHIMURA N, et al. Recent Advances and Emerging Applications of the Boundary Element Method[J]. Applied Mechanics Reviews, 2011, 64(3):1001
[3] DOMINIK B, MICHAEL J, LOTHAR G. A Comparison of FE-BE Coupling Schemes for Large-Scale Problems with Fluid-Structure Interaction[J]. International Journal for Numerical Methods in Engineering, 2010, 77(5):664-688
[4] MEHRMANN V, SCHRÖDER C. Nonlinear Eigenvalue and Frequency Response Problems in Industrial Practice[J]. Journal of Mathematics in Industry, 2011, 1(1):1-18
[5] XIAO J, MENG S, ZHANG C, et al. Resolvent Sampling Based Rayleigh-Ritz Method for Large-Scale Nonlinear Eigenvalue Problems[J]. Computer Methods in Applied Mechanics & Engineering, 2016, 310:33-57
[6] 王俊鹏, 校金友, 文立华. 大规模边界元模态分析的高效数值方法[J]. 力学学报, 2017, 49(5):1070-1080 WANG Junpeng, XIAO Jinyou, WEN Lihua. An Efficient Numerical Method for Large-Scale Modal Analysis Using Boundary Element Method[J]. Chinese Journal of Theoretical & Applied Mechanics, 2017, 49(5):1070-1080 (in Chinese)
[7] ZHENG C, ZHANG C, BI C, et al. Coupled FE-BE Method for Eigenvalue Analysis of Elastic Structures Submerged in an Infinite Fluid Domain[J]. International Journal for Numerical Methods in Engineering, 2017, 110:163-185
[8] MAEDA Y, FUTAMURA Y, SAKURAI T. Stochastic Estimation Method of Eigenvalue Density for Nonlinear Eigenvalue Problem on the Complex Plane[J]. JSIAM Letters, 2011(3):61-64
[9] KIRKUP S, WU S F. The Boundary Element Method in Acoustics[J]. International Journal for Numerical Methods in Engineering, 2000, 108(5):1973-1974
[10] CANINO L F, OTTUSCH J J, STALZER M A, et al. Numerical Solution of the Helmholtz Equation in 2D and 3D Using a High-Order Nyström Discretization[J]. Journal of Computational Physics, 1998, 146(2):627-663
[11] RONG J, WEN L, XIAO J. Efficiency Improvement of the Polar Coordinate Transformation for Evaluating BEM Singular Integrals on Curved Elements[J]. Engineering Analysis with Boundary Elements, 2014, 38:83-93
[12] GOHBERG I, RODMAN L. Analytic Matrix Functions with Prescribed Local Data[J]. Journal D'analyse Mathématique, 1981, 40(1):90-128
[13] BAI Z, FAHEY G, GOLUB G. Some Large-Scale Matrix Computation Problems[J]. Journal of Computational & Applied Mathematics, 1996, 74(1/2):71-89
[14] HUTCHINSON M F. A Stochastic Estimator of the Trace of the Influence Matrix for Laplacian Smoothing Splines[J]. Communication in Statistics-Simulation and Computation, 1989, 19(19):432-450
[15] AUSTIN A P, KRAVANJA P, TREFETHEN L N. Numerical Algorithms Based on Analytic Function Values at Roots of Unity[J]. SIAM Journal on Numerical Analysis, 2014, 52(4):1795-1821
[16] CHAILLAT S, BONNET M. Recent Advances on the Fast Multipole Accelerated Boundary Element Method for 3D Time-Harmonic Elastodynamics[J]. Wave Motion, 2013, 50(7):1090-1104
[17] 屈伸, 陈浩然. 敷设多孔吸声材料声腔特征值分析的径向积分边界元法[J]. 计算力学学报, 2015, 32(1):123-128 QU Shen, CHEN Haoran. Eigenvalue Analysis for Acoustical Cavity Covered with Porous Materials by Using the Radial Integration Boundary Element Method[J]. Chinese Journal of Computational Mechanics, 2015, 32(1):123-128 (in Chinese)
[18] GAO H, MATSUMOTO T, TAKAHASHI T, et al. Eigenvalue Analysis for Acoustic Problem in 3D by Boundary Element Method with the Block Sakurai-Sugiura Method[J]. Engineering Analysis with Boundary Elements, 2013, 37(6):914-923