铝粉致密装填率及其流化性能研究 -- 西北工业大学学报,2019,37(1):13-20
论文:2019,Vol:37,Issue(1):13-20
引用本文:
朱小飞, 胡春波, 杨建刚, 李悦, 刘世宁, 邓哲. 铝粉致密装填率及其流化性能研究[J]. 西北工业大学学报
ZHU Xiaofei, HU Chunbo, YANG Jiangang, LI Yue, LIU Shining, DENG Zhe. Research of Filling Ratio and Fluidization Performance of Dense-Packing Aluminum Powder[J]. Northwestern polytechnical university

铝粉致密装填率及其流化性能研究
朱小飞1, 胡春波1, 杨建刚1, 李悦1, 刘世宁1, 邓哲2
1. 西北工业大学 航天学院, 陕西 西安 710072;
2. 西安近代化学研究所, 陕西 西安 710065
摘要:
以颗粒堆积理论为基础,对不同粒径的铝粉进行级配振实装填实验研究,探讨了装填工艺、振动时间和级配参数对铝粉致密装填率的影响,并对致密装填所得的铝粉粒径分布均匀性及粉末流化性进行了实验检测分析。结果表明,对粉体进行分批装填、搅拌和振动,可以极大地提高粉体装填率;初期的振动对装填率提升比较明显,随着振动时间的逐渐加长,装填率提升增益将逐渐减小;级配参数的选取应尽量保证小颗粒能填满大颗粒间形成的空隙,最终在m100 μmm15 μmm1 μm=6.89:2.97:1的级配参数下获得了高达73.02%的致密装填率;检测分析结果表明该装填工艺所得铝粉在同一高度处均匀性良好,不同高度处均匀性还有待改善,致密装填所得铝粉的流化性能良好,且粉末供给精度达到了3.6%,可以满足粉末火箭发动机供粉要求。
关键词:    颗粒堆积    级配振实装填    粉末流化性    粉末火箭发动机   
Research of Filling Ratio and Fluidization Performance of Dense-Packing Aluminum Powder
ZHU Xiaofei1, HU Chunbo1, YANG Jiangang1, LI Yue1, LIU Shining1, DENG Zhe2
1. School of Aerospace, Northwestern Polytechnical University, Xi'an 710072, China;
2. Xi'an Modern Chemistry Research Institute, Xi'an 710065, China
Abstract:
Based on the granule packing theory, grading vibrating filling experiments have been carried out for aluminum powder with different particle sizes. The effects of the several factors on the dense filling ratio of aluminum powder, such as filling craft, vibration time and grading parameter, have been discussed. The distribution uniformity of particle size and fluidization performance of the dense-packing aluminum powder have been detected and analyzed. The results show that the powder filling ratio can be improved greatly by performing the batch packing, stirring and vibrating on powder. The initial vibration can improve the powder filling ratio obviously, but the ascension is not obvious with the increasing of vibration time. The selection of grading parameter should ensure that the small particles can fill in the gaps among large particles. The filling ratio as high as 73.02% has been obtained under the grading parameter m100 μm:m15μm:m1μm=6.89:2.97:1. The testing results show that the size uniformity of aluminum powder obtained by this filling craft is good at the same height, but need to be improved at different heights. The fluidization performance of dense-packing aluminum is good, and the accuracy of powder supply reaches 3.6%, which can meet the requirement of powder supply in powder rocket engine.
Key words:    granule packing    grading vibrating filling    fluidization performance of powder    powder rocket engine   
收稿日期: 2018-03-12     修回日期:
DOI: 10.1051/jnwpu/20193710013
基金项目: 国家自然科学基金(51576166)资助
通讯作者:     Email:
作者简介: 朱小飞(1994-),西北工业大学博士研究生,主要从事粉末发动机和金属颗粒燃烧研究。
相关功能
PDF(1855KB) Free
打印本文
把本文推荐给朋友
作者相关文章
朱小飞  在本刊中的所有文章
胡春波  在本刊中的所有文章
杨建刚  在本刊中的所有文章
李悦  在本刊中的所有文章
刘世宁  在本刊中的所有文章
邓哲  在本刊中的所有文章

参考文献:
[1] 张胜敏,杨玉新,胡春波. 粉末火箭发动机推力调节试验研究[J]. 固体火箭技术, 2015, 38(3):347-350 ZHANG Shengmin, YANG Yuxin, HU Chunbo. Experimental Investigation on Thrust Regulation of Powdered Rocket Motor[J]. Journal of Solid Rocket Technology, 2015, 38(3):347-350 (in Chinese)
[2] 李悦,胡春波,孙海俊,等. 粉末火箭发动机燃烧室燃烧流动特性研究[J]. 固体火箭技术, 2014, 37(6):792-796 LI Yue, HU Chunbo, SUN Haijun, et al. Study on Flow and Combustion Characteristics in the Thrust Chamber of Powder Rocket[J]. Journal of Solid Rocket Technology, 2014, 37(6):792-796 (in Chinese)
[3] BERNAL J D, MASON J. Coordination of Randomly Packed Spheres[J]. Nature, 1960, 188:910-911
[4] SCOTT G D. Packing of Equal Spheres[J]. Nature, 1960, 188:908-909
[5] SCOTT G D, KILGOUR D M. The Density of Random Close Packing of Spheres[J]. J Phys D Appl Phys, 1969, 2(6):863-866
[6] OWE B T G, MCDONALD R L, TRAINOR R J. The Packing of Spheres[J]. Powder Technology, 1969, 3(1):183-188
[7] YERAZUNIS S, CORNELL S W, WINTNER B. Dense Random Packing of Binary Mixtures of Spheres[J]. Nature, 1965, 207:835-837
[8] MCGEARY R K. Mechanical Packing of Spherical Particles[J]. Am Ceram Soc, 1961, 44:513-522
[9] LI L G, KWAN A K H. Packing Density of Concrete Mix under Dry and Wet Conditions[J]. Powder Technology, 2014, 253:514-521
[10] PARTELI J R, SCHMIDT J, BLUMEL C, et al. Attractive Particle Interaction Forces and Packing Density of Fine Glass Powders[J]. Scientific Reports, 2014, 4:1-7
[11] 吴成宝,胡小芳,段百涛. 粉体堆积密度的理论计算[J]. 中国粉体技术, 2009,15(5):76-81 WU Chengbao, HU Xiaofang, DUAN Baitao. Theoretical Calculation for Packing Density of Powder[J]. China Powder Science and Technology, 2009,15(5):76-81 (in Chinese)
[12] 欧阳鸿武,刘咏,王海兵,等. 球形粉末堆积密度的计算方法[J]. 粉末冶金材料科学与工程,2002, 7(2):87-92 OUYANG Hongwu, LIU Yong, WANG Haibing, et al. Calculation Method for Random Packing of Sphere Particles[J]. Materials Science and Engineering of Powder Metallurgy, 2002, 7(2):87-92 (in Chinese)
[13] 杨晋朝,夏智勋,胡建新,等. 粉末燃料高效装填技术研究[J]. 固体火箭技术,2013, 36(1):37-44 YANG Jinzhao, XIA Zhixun, HU Jianxin, et al. Study on High Efficiency Packing Technology of Powdered Fuel[J]. Journal of Solid Rocket Technology, 2013, 36(1):37-44 (in Chinese)
[14] STOVALL T, DELARRARD F, BUIL M. Linear Packing Density Model of Grain Mixtures[J]. Powder Technology, 1986, 48:1-12
[15] YU A B, STANDISH N. Porosity Calculations of Multi-Component Mixtures of Spherical Particles[J]. Powder Technology, 1987, 52:233-241
[16] WESTMAN A E R, HUGILL H R. The Packing of Particles[J]. Am Ceram Sot, 1930, 13(10):767-769
[17] WEYMOUTH C A G. Effects of Particle Interference in Mortars and Concrete[J]. Rock Products, 1933, 25:26
[18] SUN H, HU C, ZHANG T, et al. Experimental Investigation on Mass Flow Rate Measurements and Feeding Characteristics of Powder at High Pressure[J]. Applied Thermal Engineering, 2016, 102:30-37