超临界裂解煤油的并联通道流量分配特性研究 -- 西北工业大学学报,2019,37(1):1-6
论文:2019,Vol:37,Issue(1):1-6
引用本文:
景婷婷, 何国强, 秦飞, 李文强, 张铎, 王明皓. 超临界裂解煤油的并联通道流量分配特性研究[J]. 西北工业大学学报
JING Tingting, HE Guoqiang, QIN Fei, LI Wenqiang, ZHANG Duo, WANG Minghao. Flow Distribution Characteristics of Supercritical Hydrocarbon Fuel in Parallel Channels with Pyrolysis[J]. Northwestern polytechnical university

超临界裂解煤油的并联通道流量分配特性研究
景婷婷, 何国强, 秦飞, 李文强, 张铎, 王明皓
西北工业大学 航天学院 燃烧、热结构与内流场重点实验室, 陕西 西安 710072
摘要:
以周向热流分布极为不均匀的RBCC发动机为应用背景,采用经过校验的高精度数值仿真方法,基于超临界裂解煤油开展了并联再生冷却通道流量分配特性的三维数值模拟研究,分析了壁面热流强度、非均匀热流以及入口集液腔对并联再生冷却通道流量分配特性的影响规律。结果表明,当均匀热流条件下的热流强度增大时,分支管不均匀分配特性增强,但是当壁面加热量使得给定质量流率的煤油出口温度大于完全裂解温度时,非均匀分配特性有所缓和;壁面非均匀加热时,会造成分支管流量不均匀度急剧增大,且热流越大的分支管对应的质量流量越小,进而增大了该位置发生壁面超温的可能性,在热流相差仅0.25 MW/m2时,分支管热流相差最大为33.2%;通过增大入口集液腔流通面积可以改善并联分支管的流量分配特性,但是同时也会带来换热效率降低和压降增大的影响,在所研究工况中,入口集液腔为分支管总流通面积的4倍时,可以得到一个较好的流量分配特性。
关键词:    再生冷却    并联通道    流量分配    超临界碳氢燃料    非均匀加热    火箭基组合循环发动机   
Flow Distribution Characteristics of Supercritical Hydrocarbon Fuel in Parallel Channels with Pyrolysis
JING Tingting, HE Guoqiang, QIN Fei, LI Wenqiang, ZHANG Duo, WANG Minghao
School of Astronautics, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
Due to the asymmetric geometry of flowpath and combustion organization, the heat flux distribution on RBCC's walls are extremely non-uniform. With a validated numerical model considering the changes of thermophysical properties and chemical components, the present study analyzed the effects of heat flux intensity, non-uniformity of heat flux distribution and inlet manifold on the mass flow distribution of parallel regenerative cooling channels. Results show that the intensity of heat flux enlarges the non-uniformity of parallel channels, however, the non-uniformity is reduced when the outlet temperature is above the completely pyrolysis value; and the non-uniformity heat flux distribution increases the mal-distribution of parallel channels dramatically, the difference of mass flow rate reaches to 33.2% when the heat flux difference is only 0.25 MW/m2; increasing the flow area of inlet manifold would improve the flow distribution of parallel channels with decrease of heat transfer efficiency and increases of pressure drop.
Key words:    regenerative cooling    parallel channels    flow distribution    supercritical hydrocarbon fuel    non-uniform heating    rocket based combined cycle engine   
收稿日期: 2018-01-08     修回日期:
DOI: 10.1051/jnwpu/20193710001
基金项目: 国家自然科学基金(51706185,51506180)资助
通讯作者:     Email:
作者简介: 景婷婷(1990-),女,西北工业大学博士研究生,主要从事组合发动机的热防护系统研究。
相关功能
PDF(1368KB) Free
打印本文
把本文推荐给朋友
作者相关文章
景婷婷  在本刊中的所有文章
何国强  在本刊中的所有文章
秦飞  在本刊中的所有文章
李文强  在本刊中的所有文章
张铎  在本刊中的所有文章
王明皓  在本刊中的所有文章

参考文献:
[1] 秦飞, 吕翔, 刘佩进, 等. 火箭基组合推进研究现状与前景[J]. 推进技术, 2010, 31(6):660-665 QIN Fei, LÜ Xiang, LIU Peijin, et al. Research Status and Perspective of Rocket Based Combined Cycle Propulsion System[J]. Journal of Propulsion Technology, 2010, 31(6):660-665 (in Chinese)
[2] 王国辉, 王小军, 杨勇, 等. 火箭基组合循环(RBCC)推进系统研究现状[J]. 固体火箭技术, 2003, 26(3):1-3 WANG Guohui, WANG Xiaojun, YANG Yong, et al. Research Status about Rocket Based Combined Cycle(RBCC) Propulsion System[J]. Journal of Solid Rocket Technology, 2003, 26(3):1-3 (in Chinese)
[3] JING T T, HE G Q, LIN B B, et al. Thermal Analysis of RBCC Engine at Ejector, Ramjet and Scramjet Modes[C]//Proceedings of the AIAA Propulsion and Energy Forum, Salt Lake City, 2016:4913
[4] 赵国柱. 超燃冲压发动机碳氢燃料再生冷却流动传热研究与应用[D]. 西安:西北工业大学, 2015 ZHAO Guozhu. Research and application of Regenerative Cooling Flow and Heat Transfer of Hydrocarbon Fuels for Scramjet[D]. Xi'an, Northwestern Polytechnical University, 2015 (in Chinese)
[5] WANG J Y. Pressure Drop and Flow Distribution in Parallel-Channel Configurations of Fuel Cells:Z-Type Arrangement[J]. International Journal of Hydrogen Energy, 2010, 35(11):5498-5509
[6] WANG J Y. Pressure Drop and Flow Distribution in Parallel-Channel Configurations of Fuel Cells:U-Type Arrangement[J]. International Journal of Hydrogen Energy, 2008, 33(21):6339-6350
[7] KIM N H, KIM D Y, BYUN H W, et al. Effect of Inlet Direction on the Refrigerant Distribution in a Parallel Flow Minichannel Heat Exchanger[C]//Proceedings of the ASME 2009 7th International Conference on Nanochannels, Microchannels and Minichannels, 2009:82051
[8] JING T T, HE G Q, LI W Q, et al. Flow and Thermal Analyses of Regenerative Cooling in Non-Uniform Channels for Combustion Chamber[J]. Applied Thermal Engineering, 2017, 119:89-97
[9] JIANG Y G, ZHANG S L, FENG Y, et al. A Control Method for Flow Rate Distribution of Cracked Hydrocarbon Fuel in Parallel Channels[J]. Applied Thermal Engineering, 2016, 105:531-536
[10] JIANG Y G, CHETEHOUNA K, ZHANG S L. Sensitivity Analysis of Fluid Properties and Operating Conditions on Flow Distribution in Non-Uniformity Heated Parallel Pipes[J]. Applied Thermal Engineering, 2018, 130:458-465
[11] JIANG R P, LIU G Z, ZHANG X W. Thermal Cracking of Hydrocarbon Aviation Fuels in Regenerative Cooling Microchannels[J]. Energy & Fuels, 2013, 27(5):2563-2577
[12] WANG C C, YANG K S, TSAI J S, et al. Characteristics Flow Distribution in Compact Parallel Flow Heat Exchangers, Part I:Typical Inlet Header[J]. Applied Thermal Engineering, 2011, 31(16):3226-3234
[13] HUANG C H, WANG C H. The Design of Uniform Tube Flow Rates for Z-Type Compact Parallel Flow Heat Exchaners[J]. International Journal of Heat and Mass Transfer, 2013, 57(2):608-622