论文:2018,Vol:36,Issue(6):1076-1084
引用本文:
程锋, 唐硕, 张栋. 超声速/高超声速飞行器气动力快速估算平台设计及应用[J]. 西北工业大学学报
Cheng Feng, Tang Shuo, Zhang Dong. Design and Applications of Preliminary Evaluation Platform of Aerodynamic Forces for Supersonic/Hypersonic Vehicles[J]. Northwestern polytechnical university

超声速/高超声速飞行器气动力快速估算平台设计及应用
程锋1,2, 唐硕1,2, 张栋1,2
1. 西北工业大学 航天学院, 陕西 西安 710072;
2. 陕西省空天飞行器设计重点实验室, 陕西 西安 710072
摘要:
超声速/高超声速飞行器气动力快速估算是飞行器初步设计阶段性能评估及设计优化的关键技术之一,气动力快速估算要求达到计算精度和计算速度的平衡。基于机理性的理论和工程模型建立了超声速/高超声速飞行器气动力快速估算平台。使用流线追踪方法和面元法来计算飞行器表面任意点的流动速度矢量,并调用算法数据库计算飞行器所承受的压力和摩擦力。结果表明,快速估算平台和CFD以及实验数据有较好的吻合性,基于流线的计算方法有很好的迎角适应性,算法模型符合快速估算的要求。相比于CFD,快速估算平台有更快的计算速度;相比于实验,快速估算平台有更大的适用范围。通过简单的飞行动力学仿真,验证了快速估算平台和弹道计算平台的协同仿真能力。
关键词:    高超声速飞行器    气动力    快速估算    软件平台    流线追踪    协同仿真   
Design and Applications of Preliminary Evaluation Platform of Aerodynamic Forces for Supersonic/Hypersonic Vehicles
Cheng Feng1,2, Tang Shuo1,2, Zhang Dong1,2
1. School of Astronautics, Northwestern Polytechnical University, Xi'an 710072, China;
2. Shaanxi Aerospace Vehicle Design Key Laboratory, Xi'an 710072, China
Abstract:
Rapid evaluation of aerodynamic forces is a key technology in conceptual and preliminary performance assessment and design optimization for supersonic/hypersonic vehicles, which is expected to achieve a balance between accuracy and time. In this paper, the preliminary evaluation platform of aerodynamic forces is built based on the physical theories and engineering methods. This platform computes the local velocity vector by using the streamline tracing technology, and extracts the pressure and friction coefficients by calling methods in method database. Furthermore, an example based on HL-20 is brought out. A good agreement is obtained by comparing the calculated results via CFD with the experimental. Also, a good angle of attack compatibility of streamline tracing technology is concluded. This platform has a computation time less than that via CFD and an flight range greater than that via wind tunnel. Finally, the simple flight dynamics simulation is taken out and the synergetic process is verified.
Key words:    hypersonic vehicle    aerodynamic force    rapid evaluation    platform    streamline tracing    synergetic simulation   
收稿日期: 2017-12-18     修回日期:
DOI:
基金项目: 国家自然科学基金(11672235)与国防基础科研计划项目(A0420132102)资助
通讯作者:     Email:
作者简介: 程锋(1988-),西北工业大学博士研究生,主要从事高超声速飞行器气动建模以及总体设计研究。
相关功能
PDF(2492KB) Free
打印本文
把本文推荐给朋友
作者相关文章
程锋  在本刊中的所有文章
唐硕  在本刊中的所有文章
张栋  在本刊中的所有文章

参考文献:
[1] 吴子牛, 白晨媛, 李娟, 等. 高超声速飞行器流动特征分析[J]. 航空学报, 2015, 36(1):58-85 Wu Ziniu, Bai Chenyuan, Li Juan, et al. Analysis of Flow Characteristics for Hypersonic Vehicle[J]. ACTA Aeronautica et Astronautica Sinica, 2015, 36(1):58-85(in Chinese)
[2] 陈坚强, 张益荣, 张毅锋, 等. 高超声速气动力数据天地相关性研究综述[J]. 空气动力学学报, 2014, 32(5):587-599 Chen Jianqiang, Zhang Yirong, Zhang Yifeng, et al. Review of Correlation Analysis of Aerodynamic Data between Flight and Ground Prediction for Hypersonic Vehicle[J]. ACTA Aerodynamica Sinica, 2014, 32(5):587-599(in Chinese)
[3] 唐志共, 张益荣, 陈坚强, 等. 更准确、更精确、更高效——高超声速流动数值模拟研究进展[J]. 航空学报, 2015, 36(1):120-134 Tang Zhigong, Zhang Yirong, Chen Jianqiang, et al. More Fidelity, More Accurate, More Efficient——Progress on Numerical Simulations for Hypersonic Flow[J]. ACTA Aeronautica et Astronautica Sinica, 2015, 36(1):120-134(in Chinese)
[4] Bonner E, Clever W, Dunn K. Aerodynamic Preliminary Analysis SystemⅡ, PartⅠ:Theory[R]. NASA CR-182076, 1981
[5] Anderson John D. Fundamentals of Aerodynamics[M]. 5th ed. New York, McGraw-Hill, 2011
[6] Cruz C, Ware G. Predicted Aerodynamic Characteristics for HL-20 Lifting-Body Using Aerodynamic Preliminary Analysis System(APAS)[C]//AlAA 17th Aerospace Ground Testing Conference, Nashville, TN, 1992
[7] David J Kinney. Aero-Thermodynamics for Conceptual Design[C]//42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2004
[8] Lobbia Marcus A, Suzuki Kojiro. Experimental Investigation of a Mach 3.5 Waverider Designed Using Computational Fluid Dynamics[J]. AIAA Journal, 2015, 53(6):1590-1601
[9] Lobbia Marcus A. Multidisciplinary Design Optimization of Waverider-Derived Crew Reentry Vehicles[J]. Journal of Spacecraft and Rockets, 2017, 54(1):233-245
[10] Lobbia Marcus A. Optimization of Waverider-Derived Crew Reentry Vehicles Using a Rapid Aerodynamics Analysis Approach[C]//53rd AIAA Aerospace Sciences Meeting, Kissimmee, Florida, 2015
[11] Marcus A. Lobbia. Rapid Supersonic/Hypersonic Aerodynamics Analysis Model for Arbitrary Geometries[J]. Journal of Spacecraft and Rockets, 2017, 54(1):315-322
[12] 黄志澄. 空天飞机气动力特性的工程预测方法[J]. 气动实验与测量控制, 1991, 5(3):1-8 Huang Zhicheng. The Predicting Method of Aerodynamic Characteristics for Aerospace Plane[J]. Aerodynamic Experiment and Measurement & Control, 1991, 5(3):1-8(in Chinese)
[13] 李治宇, 杨彦广, 袁先旭, 等. 基于Euler方程的返回舱气动外形优化设计方法研究[J]. 空气动力学学报, 2012, 30(5):653-657 Li Zhiyu, Yang Yanguang, Yuan Xianxu, et al. The Study of the Reentry Capsule Shape Optimization Method Based on the Solving of the Euler Equations[J]. ACTA Aerodynamica Sinica, 2012, 30(5):653-657(in Chinese)
[14] 郝佳傲, 蒋崇文, 高振勋, 等. 有翼再入飞行器的超/高超声速气动力工程方法[J]. 中国空间科学技术, 2014(3):38-45 Hao Jiaao, Jiang Chongwen, Gao Zhenxun, et al. Aerodynamic Engineering Prediction Methods for Winged Reentry Vehicles[J]. Chinese Space Science and Technology, 2014(3):38-45(in Chinese)
[15] 龚安龙, 刘晓文, 刘周, 等. 高超声速壁面黏性力快速计算方法[J]. 空气动力学学报, 2017, 35(1):33-38 Gong Anlong, Liu Xiaowen, Liu Zhou, et al. A Rapid Method for Hypersonic Skin Viscous Force Calculation[J]. ACTA Aerodynamica Sinica, 2017, 35(1):33-38(in Chinese)
[16] Love Eugene S, Henderson Arthur, Bertram Mitchel H. Some Aspects of the Air Helium Simulation and Hypersonic Approximations[R]. NASA TN D-49, 1959
[17] Guidi A, Chu Q P, Mulder J A, et al. Implementation of an Aerodynamic Toolbox in a Reentry Flight Simulator[J]. Journal of Spacecraft and Rockets, 2003, 40(1):138-141
[18] Ware George M. Supersonic Aerodynamic Characteristics of a Proposed Assured Crew Return Capability Lifting-Body Configuration[R]. NASA TM-4136, 1989
[19] Van Driest E R. The Problem of Aerodynamic Heating[J]. Aeronautical Engineering Review, 1956(10):26-41
[20] Hazelton David M, Bowersox Rodney D W. Skin Friction Correlations for High Enthalpy Flows[C]//8th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, Norfolk, VA, 1998
[21] Bowcutt K G, Anderson J D, Capriotti D. Viscous Optimized Hypersonic Waveriders[C]//AIAA 25th Aerospace Sciences Meeting, Reno, Nevada, 1987
[22] Harris Julius E, Blanchard Doris K. Computer Program for Solving Laminar, Transitional, or Turbulent Compressible Boundary-Layer Equations for Two-Dimensional and Axisymmetric Flow[R]. Washington, NASA TM-83207, 1982
[23] Micol J R. Experimental and Predicted Aerodynamic Characteristics of a Proposed Assured Crew Return Vehicle Lifting-Body Configuration at Mach 6 and 10[C]//AIAA 16th Aerodynamic Ground Testing Conference, Seattle, WA, 1990
[24] Scallion William I. Aerodynamic Characteristics and Control Effectiveness of the HL-20 Lifting Body Configuration at Mach 10 in Air[R]. NASA TM-1999-2093517, 1999
[25] Gong Chunlin, Chen Bing, Gu Liangxian. Design and Optimization of RBCC Powered Suborbital Reusable Launch Vehicle[C]//19th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, Atlanta, GA, 2014
[26] Gong Chunlin, Chen Bing, Gu Liangxian. Comparison Study of RBCC Powered Suborbital Reusable Launch Vehicle Concepts[C]//20th AIAA International Space Planes and Hypersonic Systems and Technologies Conferenc, Glasgow, Scotland, 2015
[27] 李新国, 方群. 有翼导弹飞行动力学[M]. 西安:西北工业大学出版社, 2005 Li Xinguo, Fang Qun. Flight Dynamics of Winged Missile[M]. Xi'an, Northwestern Polytechnical Unversity Press, 2005(in Chinese)
相关文献:
1.陈经纬, 陈康, 尙妮妮, 闫杰.基于气动力/推力矢量控制的飞行器性能分析[J]. 西北工业大学学报, 2014,32(6): 877-881
2.周敏, 周军, 林鹏.降低气动舵操纵耦合的高超声速飞行器总体优化研究[J]. 西北工业大学学报, 2014,32(1): 1-5