论文:2018,Vol:36,Issue(5):963-969
引用本文:
姚军锴, 何海波, 周丹杰, 史志伟, 杜海. 等离子体激励对飞翼布局飞行器增升及流态影响[J]. 西北工业大学学报
Yao Junkai, He Haibo, Zhou Danjie, Shi Zhiwei, Du Hai. Effects of Plasma Actuator Discharge on Lift-Enhancement and Flow Patterns of Flying Wing Aircraft[J]. Northwestern polytechnical university

等离子体激励对飞翼布局飞行器增升及流态影响
姚军锴1, 何海波1, 周丹杰1, 史志伟2, 杜海2
1. 北京机电工程研究所, 北京 100074;
2. 南京航空航天大学 航空宇航学院, 南京 210016
摘要:
将纳秒脉冲等离子体激励器应用于飞翼布局飞行器上,在-4°~28°攻角范围内,开展了激励器布置位置和放电频率对增升效果的影响研究,采用油流显示方法分析了不同攻角下激励器作用与否表面流态随攻角的演化规律。研究结果表明,等离子体激励器通过放电能够在大攻角时实现飞翼布局飞行器的增升;布置位置和放电频率对增升效果的影响较大,布置于飞行器前缘的激励器能够获得最佳的控制效果,存在最优的放电频率,在该频率下流动分离被有效抑制,增升效果最佳;油流显示结果表明激励器对分离流的控制机理在于施加激励后对剪切层注入能量,增加了分离涡强度,促进了剪切层外高速与内部低速气流的掺混,有效抑制了分离的发生。
关键词:    等离子体    飞翼布局    增升    油流    攻角    流动分离    流动显示    风洞试验   
Effects of Plasma Actuator Discharge on Lift-Enhancement and Flow Patterns of Flying Wing Aircraft
Yao Junkai1, He Haibo1, Zhou Danjie1, Shi Zhiwei2, Du Hai2
1. Beijing Electro-Mechanical Engineering Institute, Beijing 100074, China;
2. College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Abstract:
The nanosecond pulsed plasma discharge actuator is used on a flying wing aircraft. At the angles of attack rang from -4° to 28°, the impact of plasma actuator arrangement position and discharge frequency on lift-enhancement effect is tested. Oil flow visualization is used to investigate the surface flow pattern varies with angles of attack for the plasma actuator turned on and off. The result indicates that lift-enhancement can be achieved through the actuator discharges at large angles of attack on flying wing aircraft. The arrangement position and discharge frequency both have a significant impact on lift-enhancement effect. The actuator which arranged at the leading edge of the aircraft could get the best lift-enhancement effect. There exists an optimal discharge frequency, flow separation under this frequency can be effectively suppressed, which results the best lift-enhancement effect. The flow visualization test shows that the control mechanisms of the plasma actuator are to inject energy to the shear layer, thus increased the vortex strength. The vortices strengthen the mixing of the outer high-speed fluid with inner low-speed fluid, which effectively restrains the separation.
Key words:    plasma actuator    flying wing    lift-enhancement    oil flow    angle of attack    flow separation    flow visualization    wind tunnel experiment   
收稿日期: 2017-09-09     修回日期:
DOI:
通讯作者:     Email:
作者简介: 姚军锴(1989-),北京机电工程研究所工程师,主要从事飞行器气动布局设计研究。
相关功能
PDF(2133KB) Free
打印本文
把本文推荐给朋友
作者相关文章
姚军锴  在本刊中的所有文章
何海波  在本刊中的所有文章
周丹杰  在本刊中的所有文章
史志伟  在本刊中的所有文章
杜海  在本刊中的所有文章

参考文献:
[1] Robert C N, Thomas C C, Chuan H, et al. Modification of the Flow Structure over a UAV Wing for Roll Control[C]//45th Aerospace Sciences Meeting, Reno, 2007:1-15
[2] 孔轶男, 王立新, 王学武, 等. 小展弦比飞翼布局飞机横向涡流控制气动机理[J]. 航空学报, 2009, 30(5):806-811 Kong Yinan, Wang Lixin, Wang Xuewu, et al. Lateral Inject Active Vortex Control Based on Low Aspect Ratio Flying Wing[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(5):806-811(in Chinese)
[3] Zhao G Y, Li Y H, Hua W Z, et al. Experimental Study of Flow Control on Delta Wings with Different Sweep Angles Using Pulsed Nanosecond DBD Plasma Actuators[J]. Journal of Aerospace Engineering, 2015, 229(11):1966-1974
[4] 杜海, 史志伟, 程克明, 等. 纳秒脉冲等离子体分离流控制频率优化及涡运动过程分析[J]. 航空学报, 2016, 37(7):2102-2111 Du Hai, Shi Zhiwei, Cheng Keming, et al. Frequency Optimization and Vortex Dynamic Process Analysis of Separated Flow Control by Nanosecond Pulsed Plasma Discharge[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7):2102-2111(in Chinese)
[5] 李玉杰, 罗振兵, 邓雄, 等. 合成双射流控制NACA0015翼型大攻角流动分离试验研究[J]. 航空学报, 2016, 37(3):817-825 Li Yujie, Luo Zhenbing, Deng Xiong, et al. Experimental Investigation on Flow Separation Control of Stalled NACA0015 Airfoil Using Dual Synthetic Jet Actuator[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3):817-825(in Chinese)
[6] Wang J J, Choi K S, Feng L H, et al. Recent Developments in DBD Plasma Flow Control[J]. Progress in Aerospace Science, 2013, 62(4):52-78
[7] 车学科,聂万胜,侯志勇,等.地面试验模拟高空等离子体流动控制效果[J]. 航空学报,2015,36(2):441-448 Che Xueke, Nie Wansheng, Hou Zhiyong, et al. High Attitude Plasma Flow Control Simulation through Ground Experiment[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2):441-448(in Chinese)
[8] 王万波, 章荣平, 黄宗波, 等. 等离子体激励用于两段翼型增升的试验研究[J]. 空气动力学学报, 2012, 31(1):64-68 Wang Wanbo, Zhang Rongping, Huang Zongbo, et al. Test Research of Two-Element Airfoil Lift Enhancement by Plasma Actuator[J]. Acta Aerodynamica Sinica, 2012, 31(1):64-68(in Chinese)
[9] 孟宣市, 杨泽人, 陈琦, 等. 低雷诺数下层流分离的等离子体控制[J]. 航空学报, 2016, 37(7):2112-2122 Meng Xuanshi, Yang Zeren, Chen Qi, et al. Laminar Separation Control at Low Reynolds Numbers Using Plasma Actuation[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7):2112-2122(in Chinese)
[10] Gursul I, Wang Z, Vardaki E. Review of Flow Control Mechanisms of Leading-Edge Vortices[J]. Progress in Aerospace Sicences, 2007, 43:246-270
[11] 李应红, 吴云, 张朴. 等离子体激励抑制翼型失速分离的实验研究[J]. 空气动力学学报, 2008, 26(3):372-377 Li Yinghong, Wu Yun, Zhang Pu. Experimental Investigation on Airfoil Stall Separation Suppression By Plasma Actuation[J]. Acta Aerodynamica Sinica, 2008, 26(3):372-377(in Chinese)
[12] 赵勤, 吴云, 李应红, 等. 端壁等离子体气动激励抑制高负荷压气机叶栅角区流动分离实验[J]. 航空动力学报, 2013, 28(9):2129-2138 Zhao Qin, Wu Yun, Li Yinghong, et al. Experiment of Flow Separation Control in Highly Loaded Compressor Cascade Corner by Endwall Plasma Aerodynamic Actuation[J]. Journal of Aerospace Power, 2013,28(9):2129-2138(in Chinese)
[13] 杜海, 史志伟, 倪芳原, 等. 基于等离子体激励的飞翼布局飞行器气动力矩控制[J]. 航空学报, 2013, 34(9):2038-2046 Du Hai, Shi Zhiwei, Ni Fangyuan, et al. Aerodynamic Moment Control of Flying Wing Vehicle Using Plasma Actuators[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(9):2038-2046(in Chinese)
[14] 杜海, 史志伟, 耿玺, 等. 等离子体激励器对微型飞行器横航向气动力矩控制的实验研究[J]. 航空学报, 2012, 33(10):1781-1790 Du Hai, Shi Zhiwei, Geng Xi,et al. Experimental Study of Directional-Lateral Aerodynamic Moment Control of Micro Air Vehicle By Plasma Actuators[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(10):1781-1790(in Chinese)
[15] Lopera J, Ng T T, Corke T C, et al. Aerodynamic Control of 1303 UAV Using Windward Surface Plasma Actuators on a Separation Ramp[C]//45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, 2007:1-21
[16] Patel M P, Ng T T, Vasudevan S, et al. Plasma Actuators for Hingeless Aerodynamic Control of an Unmanned Air Vehicle[J]. Journal of Aircraft, 2007, 44(4):1264-1274
[17] 翟琪, 张正科, 蔡晋生, 等. 等离子体激励翼型分离流动控制数值模拟[J]. 气体物理, 2016, 1(2):22-28 Zhai Qi, Zhang Zhengke, Cai Jinsheng, et al. Numerical Simulation of Plasma Control of Separated Flows over Airfoils[J]. Physics of Gases, 2016, 1(2):22-28(in Chinese)
[18] Han M H, Li J, Niu Z G, et al. Aerodynamic Performance Enhancement of a Flying Wing Using Nanosecond Pulsed DBD Plasma Actuator[J]. Chinese Journal of Aeronautics, 2015, 28(2):377-384
[19] 姚军锴, 何海波, 周丹杰, 等. 飞翼布局飞行器等离子体激励滚转操控试验[J]. 北航学报, 2017, 43(4):701-708 Yao Junkai, He Haibo, Zhou Danjie, et al. Tests of Flying Wing Air Craft Roll Control Using Plasma Actuator[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(4):701-708(in Chinese)
[20] Kato K, Breitsamter C, Obi S. Flow Separation Control over a G-387 Airfoil by Nanosecond Pulse-Periodic Discharge[J]. Experiments in Fluids, 2014, 55(8):1-19
相关文献:
1.夏露, 张欣, 杨梅花, 米百刚.飞翼布局翼型气动隐身综合设计[J]. 西北工业大学学报, 2017,35(5): 821-826