论文:2018,Vol:36,Issue(5):865-874
引用本文:
马博平, 王刚, 雷知锦, 叶正寅. 网格对声爆近场预测影响的数值研究[J]. 西北工业大学学报
Ma Boping, Wang Gang, Lei Zhijin, Ye Zhengyin. Numerical Investigation of Influence of Mesh Property in Nearfield Sonic Boom Prediction[J]. Northwestern polytechnical university

网格对声爆近场预测影响的数值研究
马博平, 王刚, 雷知锦, 叶正寅
西北工业大学 航空学院, 陕西 西安 710072
摘要:
为研究网格对近场声爆预测结果的影响,使用自研的基于非结构混合网格的三维RANS (reynolds average navier-stokes)求解器对典型标模的近场声爆过压分布进行了数值模拟和分析。以双锥旋成体模型和69°后掠三角翼模型(69° delta wing body,DWB)为考核算例,以风洞测量结果为参考,分别研究了网格对齐方式、网格类型和网格分布等因素对声爆近场过压预测的影响。结果表明网格面沿马赫角对齐对声爆预测结果捕捉有显著的改善效果,模型附近采用圆柱区域包裹的结构和非结构网格均能很好的捕捉声爆近场过压分布,但非结构网格由于可以快速生成,应用更为方便。网格展弦比和马赫锥面周向网格间距对流场中激波峰值和激波形状的捕捉有明显影响,使用相对合理的网格展弦比和马赫锥面周向网格间距有利于提高近场声爆预测精度。最后,将总结的网格生成策略应用于洛马公司LM1021(lockheed-martin 1021-01 configuration)全机构型的近场声爆预测,验证了其实用性。
关键词:    计算流体力学    声爆    近场预测    网格影响   
Numerical Investigation of Influence of Mesh Property in Nearfield Sonic Boom Prediction
Ma Boping, Wang Gang, Lei Zhijin, Ye Zhengyin
School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
To investigate the influence of mesh property in nearfield sonic boom prediction, the over-pressures of several typical configurations are commutated and analyzed with an in-house Reynolds Average Navier-Stokes solver. The property of mesh alignment, mesh type and mesh distribution are analyzed based on the double cone configuration and the 69-degree Delta Wing Body configuration. The experimental data from wind tunnel are used as comparisons. The results show that the Mach cone aligned method has significant improvement to the accuracy for the prediction of sonic boom in nearfield. Both structured and un-structed mesh with a cylinder zone near the model can help to capture the distribution of the over-pressure, however, it is more convenient to use unstructured mesh when deal with complex configurations. The aspect ratio and circumferential spacing affect the captured shock wave peak value and the shapes. The accuracy of the prediction can be satisfied by carefully selecting these two factors. In the last, the summarized strategies for mesh generation are applied in the sonic boom prediction of a complex supersonic transport configuration, the Lockheed Martin 1021 to verify its practicability.
Key words:    computational fluid dynamics    sonic boom    nearfield prediction    mesh property   
收稿日期: 2017-09-09     修回日期:
DOI:
基金项目: 国家自然科学基金(11772265)资助
通讯作者:     Email:
作者简介: 马博平(1991-),西北工业大学博士研究生,主要从事低阻、低声爆超声速客机研究。
相关功能
PDF(5519KB) Free
打印本文
把本文推荐给朋友
作者相关文章
马博平  在本刊中的所有文章
王刚  在本刊中的所有文章
雷知锦  在本刊中的所有文章
叶正寅  在本刊中的所有文章

参考文献:
[1] 张帅, 夏明, 钱伯文. 民用飞机气动布局发展演变及其技术影响因素[J]. 航空学报, 2016, 37(1):30-44 Zhang Shuai, Xia Ming, Qian Bowen. Evolution and Technical Factors Influencing Civil Aircraft Aerodynamic Configuration[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1):30-44(in Chinese)
[2] Park M A, Aftosmis M J, Campbell R L, et al. Summary of the 2008 NASA Fundamental Aeronautics Program Sonic Boom Prediction Workshop[J]. Journal of Aircraft, 2014, 51(3):987-1001
[3] Park M A, Morgenstern John M. Summary and Statistical Analysis of the First AIAA Sonic Boom Prediction Workshop[J]. Journal of Aircraft, 2016, 53(2):578-598
[4] Park M A, Marian N. Nearfield Summary and Statistical Analysis of the Second AIAA Sonic Boom Prediction Workshop[C]//35th AIAA Applied Aerodynamics Conference, Denver, Colorado, 2017
[5] Rallabhandi S K, Loubeau A. Summary of Propagation Cases of the Second AIAA Sonic Boom Prediction Workshop[C]//35th AIAA Applied Aerodynamics Conference, Denver, Colorado, 2017
[6] Whitham G B. The Flow Pattern of a Supersonic Projectile[J]. Communications on Pure and Applied Mathematics, 1952, 5(3):301-348
[7] Hayes W D. Brief Review of the Basic Theory:Sonic Boom Research[R]. NASA SP-147, 1967
[8] Rallabhandi S K. Advanced Sonic Boom Prediction Using the Augmented Burgers Equation[J]. Journal of Aircraft, 2011, 48(4):1245-1253
[9] Cliff S E, Thomas S D. Euler/Experiment Correlations of Sonic Boom Pressure Signatures[J]. Journal of Aircraft, 1993, 30(5):669-675
[10] Choi S, Alonso J J, Weide E V D. Numerical and Mesh Resolution Requirements for Accurate Sonic Boom Prediction[J]. Journal of Aircraft, 2009, 46(4):1126-1139
[11] Carter M B, Deere K A. A Grid Sourcing and Adaptation Study Using Unstructured Grids for Supersonic Boom Prediction[C]//26th AIAA Applied Aerodynamics Conference, Honolulu, Hawaii, 2008
[12] Campbell R L, Carter M B, Deere K A. Efficient Unstructured Grid Adaptation Methods for Sonic Boom Prediction[C]//26th AIAA Applied Aerodynamics Conference, Honolulu, Hawaii, 2008
[13] Meredith K, Dahlin J, Graham D, et al. Computational Fluid Dynamics Comparison and Flight Test Measurement of F-5E Off-Body Pressures[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2005
[14] Laflin K R, Klausmeyer S M, Chaffin M. A Hybrid Computational Fluid Dynamics Procedure for Sonic Boom Prediction[C]//24th Applied Aerodynamics Conference, San Francisco, California, 2006
[15] 冯晓强, 宋笔锋, 李占科. 基于混合网格的低声爆反设计方法研究[J]. 计算力学学报,2013:30(5):717-722 Feng Xiaoqiang, Song Bifeng, Li Zhanke. Low Boom Inverse Design Method Based on Hybrid Grid[J]. Chinese Journal of Computational Mechanics, 2013, 30(5):717-722(in Chinese)
[16] 冯晓强, 李占科, 宋笔锋, 等. 基于混合网格的声爆/气动一体化设计方法研究[J]. 空气动力学学报,2014, 32(1):30-37 Feng Xiaoqiang, Li Zhanke, Song Bifeng, et al. Optimization of Sonic Boom and Aerodynamic Based on Structured/Unstructured Hybrid Grid[J]. ACTA Aerodynamica Sinica, 2014, 32(1):30-37(in Chinese)
[17] 徐悦, 宋万强. 典型低音爆构型的近场音爆计算研究[J]. 航空科学技术, 2016, 27(7):12-16 Xu Yue, Song Wanqiang. Near Field Sonic Boom Calculation on Typical LSB Configuration[J]. Aeronautical Science & Technology, 2016, 27(7):12-16(in Chinese)
[18] Ma B P, Wang G, Ren J, et al. Near Field Sonic Boom Analysis with HUNS3D Solver[C]//55th AIAA Aerospace Sciences Meeting Grapevine, Texas, 2017
[19] 王刚, 马博平, 雷知锦, 等. 典型标模音爆的数值预测与分析[J]. 航空学报, 2018, 39(1):164-176 Wang Gang, Ma Boping, Lei Zhijin, et al. Simulation and Analysis for Sonic Boom Prediction on Several Typical Calculation Models[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1):164-176(in Chinese)
[20] Park M A, Campbell R L, Elmiligui A A, et al. Specialized CFD Grid Generation Methods for Near-Field Sonic Boom Prediction[C]//52nd Aerospace Sciences Meeting, National Harbor, Maryland, 2014
[21] Wang G, Ye Z Y. Mixed Element Type Unstructured Grid Generation and its Application to Viscous Flow Simulation[C]//24th International Congress of Aeronautical Sciences, Yokohama, Japan, 2004
[22] Spalart P, Allmaras S. A One-Equation Turbulence Model for Aerodynamic Flows[C]//30th Aerospace Sciences Meeting and Exhibit, Reno, 1992
[23] Roe P L. Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes[J]. Journal of Computational Physics, 1981, 43(2):357-72
[24] Liou M S. Ten Years in the Making-AUSM-Family[C]//15th AIAA Computational Fluid Dynamics Conference, Anaheim, 2013
[25] lsmail Farzad, Philip L. Affordable, Entropy-Consistent Euler Flux Functions Ⅱ:Entropy Production at Shocks[J]. Journal of Computational Physics, 2009, 228(15):5410-36
[26] Jameson A, Schmidt W, Turkel E. Numerical Solution of The Euler Equations by Finite Volume Methods Using Runge Kutta Time Stepping Schemes[C]//14th Fluid and Plasma Dynamics Conference, Palo Alto, 1981
[27] Venkatakrishnan V. Convergence to Steady State Solutions of the Euler Equations on Unstructured Grids with Limiters[J]. Journal of Computational Physics, 1995, 118(118):120-130
[28] Menter F R. Zonal Two Equation k-w Turbulence Models for Aerodynamic Flows[J]. AIAA Journal, 1993, 36(11):1975-1982
[29] Hunton L W, Hicks R M, Mendoza J P. Some Effects of Wing Planform on Sonic Boom[R]. NASA TN-D-7160, 1973