基于样条曲线描述的超声速喷管型面优化设计 -- 西北工业大学学报,2018,36(4):785-791
论文:2018,Vol:36,Issue(4):785-791
引用本文:
吴盛豪, 廖达雄, 陈吉明, 陈钦, 裴海涛. 基于样条曲线描述的超声速喷管型面优化设计[J]. 西北工业大学学报
Wu Shenghao, Liao Daxiong, Chen Jiming, Chen Qin, Pei Haitao. Supersonic Nozzle Optimization Design with Spline Curves Fitting the Nozzle Profiles[J]. Northwestern polytechnical university

基于样条曲线描述的超声速喷管型面优化设计
吴盛豪, 廖达雄, 陈吉明, 陈钦, 裴海涛
中国空气动力研究与发展中心 设备设计与测试技术研究所, 四川 绵阳 621000
摘要:
以试验段流场指标为目标,对0.6 m连续式跨声速风洞喷管型面进行优化设计。将试验段实际轴向马赫数与设计值的均方根误差作为优化目标,提出优化问题并利用试验结果验证了CFD计算。采用三次样条曲线描述喷管型面,并搜寻到最佳插值点分布方案以提高拟合精度;构建基于高斯过程模型的重启优化算法改善梯度算法全局特性的同时减少了气动评估的次数,提高了计算效率。计算结果表明,该优化设计的方法,能够以较小的代价得到流场品质较优和马赫数准度较高的超声速喷管型面曲线,模型区马赫数均方根偏差最优结果可达0.001。
关键词:    超声速喷管    优化设计    样条曲线    高斯过程模型    CFD   
Supersonic Nozzle Optimization Design with Spline Curves Fitting the Nozzle Profiles
Wu Shenghao, Liao Daxiong, Chen Jiming, Chen Qin, Pei Haitao
Facility Design and Instrumentation Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China
Abstract:
Supersonic nozzle contour optimization design was applied to 0.6m×0.6m continuous transonic wind tunnel to improve flow quality in the test section. The Mach number root mean square deviation with the design value was chosen as optimization target. And the CFD results were verified with experimental results. Cubic spline curves with the optimal interpolating point distribution scheme were used to fit the nozzle contour. Efficient global optimization based on the Gaussian process surrogate model was used to reduce the times of evaluation. Results indicate that, the optimization framework can generate a supersonic nozzle contour with better flow quality and more accurate Mach number and that the optimal Mach number root mean square deviation is 0.001.
Key words:    supersonic nozzle    optimization design    spline curves    Gaussian process model    computational fluid dynamics   
收稿日期: 2017-09-01     修回日期:
DOI:
通讯作者:     Email:
作者简介: 吴盛豪(1990-),中国空气动力研究与发展中心硕士研究生,主要从事风洞气动设计及试验研究。
相关功能
PDF(1720KB) Free
打印本文
把本文推荐给朋友
作者相关文章
吴盛豪  在本刊中的所有文章
廖达雄  在本刊中的所有文章
陈吉明  在本刊中的所有文章
陈钦  在本刊中的所有文章
裴海涛  在本刊中的所有文章

参考文献:
[1] Varner M O, Summers W E, Davis M W. A Review of Two-Dimensional Nozzle Design Techniques[C]//12th Aerodynamics Testing Conference, Williamsburg, 1982:06-09
[2] 易仕和. 超声速与高超声速喷管设计[M]. 北京:国防工业出版社, 2013 Yi Shihe. Supersonic and Hypersonic Nozzle Design[M]. Beijing, National Defense Industry Press, 2013(in Chinese)
[3] Ogawa H, Boyce R R. Nozzle Design Optimization for Axisymmetric Scramjets by Using Surrogate-Assisted Evolutionary Algorithms[J]. Journal of Propulsion & Power,2012,28(6):1324-1338
[4] Holman T D, Osborn M. Numerical Optimization of Micro-Nozzle Geometries for Low Reynolds Number Resistojets[C]//51th Joint Propulsion Conference, Orlando, 2013:3923-3932.
[5] 甘文彪,阎超. 高超声速飞行器后体/尾喷管优化设计[J]. 北京航空航天大学学报,2011,37(11):1440-1445 Gan Wenbiao, Yan Chao. Afterbody/Nozzle Optimal Design of Hypersonic Vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011,37(11):1440-1445(in Chinese)
[6] 施小娟,吉洪湖. 基于代理模型的二元收扩喷管流道型面优化设计[J]. 航空动力学报, 2016,31(9):2124-2131 Shi Xiaojuan, Ji Honghu. Optimization Design of Two Dimensional Convergent and Divergent Nozzles' Profile Based on Surrogate Models[J]. Journal of Aerospace Power, 2016,31(9):2124-2131(in Chinese)
[7] 虞跨海, 莫展, 张亮,等. 固体火箭发动机特型喷管造型设计与优化[J]. 弹箭与制导学报, 2012,32(4):137-138 Yu Kuahai, Mo Zhan, Zhang Liang, et al. Profile Design and Optimization of SRM Nozzle[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2012,32(4):137-138(in Chinese)
[8] Khishtandar S, Zandieh M. Comparisons of Some Improving Strategies on NSGA-Ⅱ for Multi-Objective Inventory System[J]. Expert Systems with Applications, 2011, 38(10):12051-12057
[9] 贺建军. 基于高斯过程模型的机器学习算法研究与应用[D]. 大连:大连理工大学, 2012 He Jianjun. Research and Application of Machine Learning Algorithms Based on Gaussian Process Model[D]. Dalian, Dalian University of Technology, 2012(in Chinese)
[10] Zhang Qingfu, Member Senior, Liu Wudong, et al. Expensive Multi-Objective Optimization by MOEA/D with Gaussian Process Model[J]. IEEE Trans on Evolutionary Computation, 2009,14(3):456-474