基于改进特征的图像检索方法研究 -- 西北工业大学学报,2018,36(4):742-747
论文:2018,Vol:36,Issue(4):742-747
引用本文:
乔鸿海, 邓正宏, 薛静, 宋群. 基于改进特征的图像检索方法研究[J]. 西北工业大学学报
Qiao Honghai, Deng Zhenghong, Xue Jing, Song Qun. Research of Image Retrieval Method Based on Improved Feature[J]. Northwestern polytechnical university

基于改进特征的图像检索方法研究
乔鸿海, 邓正宏, 薛静, 宋群
西北工业大学 自动化学院, 陕西 西安 710072
摘要:
针对在图像检索过程中,传统单一特征不能较好反映图像的颜色分布和内容细节等相关信息,降低了图像检索性能的问题,提出一种基于改进颜色和纹理综合特征的图像检索方法。根据HSV颜色模型区域均值,利用改进关联权值模型,获取颜色均值特征向量;基于Haar小波进行图像分解变换。在图像的低频分量中,根据低频特征结构模型,获取低频纹理特征向量;通过Canberra距离求取图像相似度。实验结果表明:方法在Corel-1000和Corel-5000标准图库中进行测试,准确率和检索率等性能参数得到了相应提高。
关键词:    图像检索    改进颜色均值特征    改进低频纹理特征    相似度   
Research of Image Retrieval Method Based on Improved Feature
Qiao Honghai, Deng Zhenghong, Xue Jing, Song Qun
School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
In the process of image retrieval, the traditional single feature can't reflect the distribution and details of image color and content, which have some adverse influence on the performance of image retrieval. This paper presents an image retrieval method based on improved color and texture feature. According to the mean of the HSV color model region, algorithm obtains the mean eigenvectors of the color feature by using the improved correlation weight model. The image decomposition transformation is obtained through the Haar wavelet. In the low-frequency component of the image decomposition, the low-frequency texture feature vector is obtained according to the low-frequency feature structure model. The similarity of image is calculated by the Canberra distance. Experimental results show that:the methods of retrieval are tested in Corel-1000 and Corel-5000 standard gallery, which accuracy rate and retrieval rate have been improved accordingly.
Key words:    image retrieval methods    improve color average feature    improved iow frequency texture feature    similarity    MATLAB   
收稿日期: 2017-04-28     修回日期:
DOI:
基金项目: 国家自然科学基金(61471299)资助
通讯作者:     Email:
作者简介: 乔鸿海(1987-),西北工业大学博士研究生,主要从事图像处理及模式识别研究。
相关功能
PDF(1262KB) Free
打印本文
把本文推荐给朋友
作者相关文章
乔鸿海  在本刊中的所有文章
邓正宏  在本刊中的所有文章
薛静  在本刊中的所有文章
宋群  在本刊中的所有文章

参考文献:
[1] Kanimozhi T, Latha K. A Meta-Heuristic Optimization Approach for Content Based Image Retrieval Using Relevance Feedback Method[J]. Lecture Notes in Engineering & Computer Science, 2013, 2205(1):775-780
[2] Feng L, Wu J, Liu S, et al. Global Correlation Descriptor:a Novel Image Representation for Image Retrieval[J]. Journal of Visual Communication & Image Representation, 2015, 33:104-114
[3] Ashraf R, Bashir K, Irtaza A, et al. Content Based Image Retrieval Using Embedded Neural Networks with Bandletized Regions[J]. Entropy, 2015, 17(6):3552-3580
[4] Alkhawlani M, Elmogy M, Hazem M, et al. Content-Based Image Retrieval Using Local Features Descriptors and Bag-of-Visual Words[J]. International Journal of Advanced Computer Science & Applications, 2015, 6(9):212-219
[5] Chatbri Houssem, Kameyama Keisuke, Kwan Paul. Towards a Segmentation and Recognition -Free Approach for Content-Based Document Image Retrieval of Handwritten Queries[C]//IEEE Asian Conference on Pattern Recognition, 2016:146-150
[6] Badawi U A, Alsmadi M K S. A Hybrid Memetic Algorithm(Genetic Algorithm and Tabu Local Search) with Back-Propagation Classifier for Fish Recognition[J]. International Review on Computers & Software, 2013, 8(6):1287-1293
[7] Chathurika K, Jayasinghe P. A Revised Averaging Algorithm for an Effective Feature Extraction in Component-Based Image Retrieval System[C]//Advance Computing Conference, 2015:1153-1157
[8] Kobayashi K, Chen Q. Image Retrieval Using Features in Spatial and Frequency Domains Based on Block-Division[C]//International Conference on Computational Science and Computational Intelligence, 2016:448-453
[9] Dubey S R, Singh S K, Singh R K. Local Diagonal Extrema Pattern:A New and Efficient Feature Descriptor for CT Image Retrieval[J]. IEEE Signal Processing Letters, 2015, 22(9):1215-1219
[10] 顾晓东, 杨诚. 新的颜色相似度衡量方法在图像检索中的应用[J]. 仪器仪表学报, 2014, 35(10):2286-2292 Gu Xiaodong, Yang Cheng. Application of New Color Similarity Measurement Method in Image Retrieval[J]. Chinese Journal of Scientific Instrument, 2014, 35(10):2286-2292(in Chinese)