采用虚拟引力场的太阳帆/电推进混合推力机动轨道设计 -- 西北工业大学学报,2018,36(4):618-626
论文:2018,Vol:36,Issue(4):618-626
引用本文:
孙冲, 袁建平, 方群, 崔尧, 汪明晓, 刘易斯. 采用虚拟引力场的太阳帆/电推进混合推力机动轨道设计[J]. 西北工业大学学报
Sun Chong, Yuan Jianping, Fang Qun, Cui Yao, Wang Mingxiao, Liu Yisi. Hybrid Low Thrust Propulsion Trajectory Design and Optimization Using Virtual Gravity Method[J]. Northwestern polytechnical university

采用虚拟引力场的太阳帆/电推进混合推力机动轨道设计
孙冲1, 袁建平1, 方群1, 崔尧2, 汪明晓3, 刘易斯4
1. 西北工业大学 航天飞行动力学技术国家级重点实验室, 陕西 西安 710072;
2. 西北工业大学 深圳研究生院, 深圳 518057;
3. 上海宇航系统工程研究所, 上海 201109;
4. 国家航天局空间碎片监测与应用中心, 北京 100012
摘要:
针对连续小推力轨道设计问题,提出了一种采用虚拟引力场的太阳帆-电推进混合小推力轨道设计与优化方法。首先,给出了虚拟引力场的定义,以及太阳帆/电推进混合推力模型;然后建立了基于混合推进方法设计连续小推力机动轨道设计模型;并推导了该动力学模型的解析解;其次采用四阶龙格库塔数值方法分析了该解析解的精度,提出了误差因子参数的概念,采用误差因子参数约束来保证解析解精度。最后,以地球-火星转移轨道设计的算例,求解了采用太阳帆/电推进混合推进方式实现航天器轨道机动,并将其结果与单独电推力方法进行了对比。仿真结果表明,该方法能够大大减小燃料消耗以及轨道转移任务时间;与混合连续推力间接优化方法相比,该解析方法能够很大程度上减少计算时间。
关键词:    连续小推力    太阳帆/电推进混合推进    轨道转移    轨道优化   
Hybrid Low Thrust Propulsion Trajectory Design and Optimization Using Virtual Gravity Method
Sun Chong1, Yuan Jianping1, Fang Qun1, Cui Yao2, Wang Mingxiao3, Liu Yisi4
1. School of Aerospace, Northwestern Polytechnical University, Xi'an 710072, China;
2. Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China;
3. Shanghai Aerospace System Engineering Research Institute, Shanghai 201109, China;
4. National Astronautical Observation, CAS Space Debris Observation and Application Center, CNSA 100012, China
Abstract:
a novel spacecraft trajectory design method using hybrid low thrust system is proposed in this paper. The hybrid system is constituted with a solar sail propulsion thruster and a solar electric propulsion thruster. In proposed method, the former one provides radical thrust and circumferential thrust to from a virtual gravity, while the later one provides a tangential thrust. In this way, the spacecraft is virtually motioned by constant tangential thrust in a virtual gravity field. Using proposed method, the thrusting trajectory can be parameterized, and a large number of feasible trajectories for circle to circle rendezvous problem can be obtained. To the end the steering law to minimize the fuel cost is found using Matlab optimization tools Fmicon function, and the result is compared with traditional pure solar electric propulsion method in terms of payload mass fraction. The simulation results show that the proposed method can reduced propellant consumption significantly compared with the pure SEP system.
Key words:    continuous low thrust    MATLAB    parameterization    solar sail/solar electric propulsion    orbital rendezvous    trajectory optimization   
收稿日期: 2017-05-12     修回日期:
DOI:
通讯作者:     Email:
作者简介: 孙冲(1988-),西北工业大学助理研究员,主要从事航天飞行动力学与控制研究。
相关功能
PDF(1904KB) Free
打印本文
把本文推荐给朋友
作者相关文章
孙冲  在本刊中的所有文章
袁建平  在本刊中的所有文章
方群  在本刊中的所有文章
崔尧  在本刊中的所有文章
汪明晓  在本刊中的所有文章
刘易斯  在本刊中的所有文章

参考文献:
[1] Williams S N, Coverstone-Carroll V. Mars Missions Using Solar Electric Propulsion[J]. Journal of Spacecraft and Rockets, 2000, 37(1):71-77
[2] Dachwald B. Optimization of Interplanetary Solar Sail Craft Trajectories Using Evolutionary Neuro-Control[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(1):66-72
[3] Mcinnes C R, Simmons J F L. Solar Sail Halo Orbits. CaseⅠ:Heliocentric; CaseⅡ:Geocentric Case[J]. Journal of Spacecraft & Rockets, 1992, 29(4):466-479
[4] Malcolm Macdonald. Analytical, Circle-to-Circle Low-Thrust Transfer Trajectories with Plane Change[C]//AIAA Guidance, Navigation and Control Conference 2013, Boston, Massachusetts
[5] Mengali G, Quarta A A. Optimal Three-Dimensional Interplanetary Rendezvous Using Non-Ideal Solar Sail[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(1):173-177
[6] 袁建平, 孙冲, 方群. 基于虚拟中心引力场方法的航天器转移轨道设计[J]. 力学学报, 2015, 47(1):180-184 Yuan Jianping, Sun Chong, Fan Qu. The Continuous Low thrust Transfer Trajectory Design Using the Virtual Gravity Field Method[J]. Acta Mechanica sinica, 2015, 47(1):180-184(in Chinese)
[7] Sun C, Yuan J P, Fang Q. Continuous Low Thrust Trajectory Optimization for Preliminary Design[J]. Proceedings of the Institution of Mechanical Engineers Part G Journal of Aerospace Engineering, 2015, 230(5):1-11
[8] Mengali G, Quarta A A. Trajectory Design with Hybrid Low-Thrust Propulsion System[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(2):419-426
[9] Steven Owens, Malcolm Macdonald. Analogy to Bi-Elliptic Transfers Incorporating High-and Low-Thrust[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(3):892-895
[10] Bernd Dachwald, Malcolm Macdonald. Parametric Model and Optimal Control of Solar Sails with Optical Degradation[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(5):
[11] Gao Y, Kluever C A. Analytic Orbital Averaging Technique for Computing Tangential-Thrust Trajectories[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(6):11-12